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Abstract

Experience engenders learning, but not all learning involves representational change. In this paper, we provide a dramatic case
study of the distinction between learning and representational change. Specifically, we examined long- and short-term changes in
representations of numeric magnitudes by asking individuals with Williams syndrome (WS) and typically developing (TD)
children to estimate the position of numbers on a number line. As with TD children, accuracy of WS children’s numerical
estimates improved with age (Experiment 1) and feedback (Experiment 2). Both long- and short-term changes in estimates of WS
individuals, however, followed an atypical developmental trajectory: as TD children gained in age and experience, increases in
accuracy were accompanied by a logarithmic-to-linear shift in estimates of numerical magnitudes, whereas in WS individuals,
accuracy increased but logarithmic estimation patterns persisted well into adulthood and after extensive training. These findings
suggest that development of numerical estimation in WS is both arrested and atypical.

Introduction

Williams syndrome (WS) is a neurodevelopmental
genetic disorder that affects roughly 1–1.3 in 10,000
(Strømme, Bjørnstad & Ramstad, 2002) and is caused by
a contiguous hemizygous deletion of approximately 28
genes on chromosome 7 (7q11.23) (Ewart, Morris,
Atkinson, Jin, Sternes, Spallone, Stock, Leppert &
Keating, 1993; Peoples, Franke, Wang, Perez-Jurado,
Paperna, Cisco & Francke, 2000). WS is associated with
mild to moderate intellectual disability, physical abnor-
malities such as vascular stenoses, and atypical facial
characteristics (Bruno, Rossi, Thuer, Cordoba & Alday,
2003; Martens, Wilson & Reutens, 2008; Morris &
Mervis, 1999). The cognitive profile of WS is described
as fractionated. Some aspects of language and face
processing are relatively spared (Brock, 2007; Gagliardi,
Bonaglia, Selicorni, Borgatti & Giorda, 2003; Karmiloff-
Smith, Tyler, Voice, Sims, Udwin, Howlin & Davies,
1998), whereas visuospatial abilities are significantly
impaired (Farran & Jarrold, 2004, 2005; Hoffman,
Landau & Pagani, 2003; Nakamura, Watanabe,
Matsumoto, Yamanaka, Kumagai, Miyazaki, Matsushi-
ma & Mita, 2001). The vast majority of individuals with
WS demonstrate academic delays that also show evi-
dence of variability across content areas: reading and

spelling performance falls below average compared to
typically developing (TD) children (Laing, Hulme, Grant
& Karmiloff-Smith, 2001; Levy, Smith & Tager-Flus-
berg, 2003), and most mathematical skills are signifi-
cantly delayed (Ansari, Donlan & Karmiloff-Smith,
2007; Howlin, Davies & Udwin, 1998; Paterson, Girelli,
Butterworth & Karmiloff-Smith, 2006).

One reason math skills are significantly delayed in
individuals with WS may be due to impaired represen-
tations of numeric magnitude (O’Hearn & Landau,
2007; O’Hearn & Luna, 2009). Generally, representa-
tions of numeric magnitude underlie one’s ability to
estimate and compare the absolute value of numeric
quantities, to compare the magnitudes denoted by
numerals, and to estimate the position of numbers on a
number line (Dehaene, 1989; Piazza, Izard, Pinel, Bihan
& Dehaene, 2004; Siegler & Opfer, 2003); proficiency in
these activities also correlates positively with math
proficiency (Booth & Siegler, 2008; Geary, Hoard,
Byrd-Craven, Nugent & Numtee, 2007; Halberda,
Mazzocco & Feigenson, 2008).

Several observations suggest that children with WS
possess impaired numerical-magnitude representations.
First, discriminating between large number sets (e.g. 8 vs.
16 dots) is much more difficult for WS 3-year-olds than
TD 6-month-old infants (Van Herwegen, Ansari, Xu &

Address for correspondence: John E. Opfer, Department of Psychology, The Ohio State University, 245 Psychology Building, 1835 Neil Avenue,
Columbus, OH 43210, USA; e-mail: opfer.7@osu.edu

© 2012 Blackwell Publishing Ltd, 9600 Garsington Road, Oxford OX4 2DQ, UK and 350 Main Street, Malden, MA 02148, USA.

Developmental Science 15:6 (2012), pp 863–875 DOI: 10.1111/j.1467-7687.2012.01187.x



Karmiloff-Smith, 2008; Xu & Spelke, 2000). Second, WS
adolescents and adults have more difficulty comparing
relative magnitudes of two single-digit numerals to a
target than TD 6-year-olds (O’Hearn & Landau, 2007).
Third, individuals with WS perform poorly on mental
number line tasks, in which they are asked to determine
which of two numbers is closest to a target number
(O’Hearn & Landau, 2007). In addition, accuracy of
numerosity estimation increases much more for TD
children than WS children, with accuracy of WS adults’
estimates being slightly less than that of TD 6- to 7-year-
old children (Ansari et al., 2007). Thus, across many
studies, tasks, and age groups, individuals with WS
demonstrate age-inappropriate representations of
numerical magnitude.

One way that numerical-magnitude representations
might be impaired in individuals with WS is that
magnitudes of numbers are represented as increasing
logarithmically with actual value (as on a logarithmically
scaled mental number line), whereas TD children can
transition from logarithmic to linear representations over
a relatively short period of time and with little experience
necessary (Opfer & Siegler, 2007; Opfer & Thompson,
2008; Siegler & Opfer, 2003; Thompson & Opfer, 2008;
for discussion, see also Barth & Paladino, 2011, and
Opfer, Siegler & Young, 2011). How might previously
observed errors of WS children be generated by a
logarithmically scaled mental number line? Consider
proficiency in number comparison, which is generally
correlated positively with the distance between two
numbers (e.g. 1 and 8 is more quickly and accurately
compared than 6 and 8); (Krajcsi, Lukács, Igács,
Racsmány & Pléh, 2009; Moyer & Landauer, 1967;
Sekuler & Mierkiewicz, 1977). On a logarithmic number
line, the distance between two numbers differs from the
distance between the same two numbers on a linear
number line. For example, on a scale from 1 to 16, the
distance between 8 and 16 on a logarithmic scale is less
than the distance between 8 and 16 on a linear scale.
From this perspective, the fact that WS 3-year-olds have
greater difficulty comparing 8 and 16 than TD children
makes sense if WS 3-year-olds represent 1–16 logarith-
mically (where 8 and 16 seem close), whereas TD 3-year-
olds represent that range linearly (where 8 and 16 seem
further apart). Indeed, a switch from logarithmic to
linear scaling of numerical magnitudes predicts changes
in accuracy well beyond number comparison (for review,
see Opfer, Siegler & Young 2011). For tasks requiring
children to locate whether 8 was closer to 6 or 11 (as in
O’Hearn & Landau, 2007), for example, logarithmic
numerical-magnitude representations would also yield
lower accuracy – and thus potentially explain why WS
children’s accuracy is lower than that of TD children of
the same age.

Alternative explanations for the difficulties of WS
individuals in numerical cognition are certainly viable.
Rather than their numerical-magnitude representations
failing to develop much beyond that of TD 6-year-olds,

representations of WS individuals may fail to develop
much beyond that of TD 2- and 3-year-olds. For
example, TD 2- and 3-year-olds who count flawlessly
from 1 to 10 have no idea that 6 > 4 and 8 > 6, nor know
how many pennies to give an adult who asks for 4 or
more, nor estimate the positions of numbers on number
lines even logarithmically (Le Corre, Van de Walle,
Brannon & Carey, 2006; Le Corre & Carey, 2007;
Sarnecka & Carey, 2008; Young, Marciani & Opfer,
2011). A general reason to think this alternative is
unlikely, however, comes from previous findings that
individuals with WS undergo slow development in many
areas (prominently in space), followed by arrest at the
functional level of 4- to 6-year-olds, some time in
adolescence (Landau, 2011; Landau & Hoffman, 2007).

The present studies

To test our theory that the logarithmic mental number
line of TD children persists for many more years among
individuals with WS than is typical, we asked WS
children and adults to estimate the magnitudes of
numbers on number lines, and we compared age-related
changes among WS individuals with those previously
found among TD children and adults (Experiment 1).
Following previous reviews (e.g. Siegler, Thompson &
Opfer, 2009; Landau, 2011), our expectation was that
both WS children and adults would estimate numerical
magnitudes on a 0–1000 number line to increase loga-
rithmically with actual value, much more like TD 6-year-
olds than TD 3-year-olds or TD adults.

In Experiment 2, we examined the process of develop-
mental change in WS more closely by using the microge-
netic method (Karmiloff-Smith, 1993; Siegler & Crowley,
1991), which allowed a trial-by-trial assessment of how
WS participants responded to relevant experiences about
the magnitudes of numbers and how their responses
compared to the responses of TD individuals. In TD
children, the combination of cross-sectional and micro-
genetic data often yields complementary information that
provides an unusually clear description of the change
process (Opfer & Siegler, 2004, 2007; Siegler & Svetina,
2002; Siegler, Thompson & Opfer, 2009). In WS individ-
uals, however, use of microgenetic methods is much more
rare, and cross-sectional andmicrogenetic data have never
been obtained from the same WS individuals in previous
studies. This situation is unfortunate because fine-grained
observations of the change process could reveal atypical
responses to experiences, which could coexist (and con-
tribute to) the slow developmental patterns previously
observed in individuals with WS.

Experiment 1: Age-related changes in WS and
TD estimates of numerical magnitude

Experiment 1 had two major purposes. Our first goal
was to examine whether children with WS – like TD
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children – estimate numeric magnitudes to increase
logarithmically with actual value. This goal was impor-
tant theoretically because it allowed us to distinguish
between early- and late-onset differences in development,
and it was important practically because it allowed us to
identify children who could potentially benefit from
feedback in Experiment 2. The second goal was to test
whether adults with WS – like TD older children and
adults – estimate numeric magnitudes to increase linearly
with actual value. This goal was important because it
provided the most direct test of the hypothesis that WS
individuals fail to develop linear numerical-magnitude
representations.

Method

Participants

WS participants were 15 children (mean
age = 11.8 years, range: 6–17 years) and 15 adults
(mean age = 33.7 years, range: 18–56 years) with
phenotypic and genetic confirmation of WS. The mean
Verbal IQ was 75.31 (range 56–101), the mean
Nonverbal IQ was 66.25 (44–87), and the Composite
IQ was 67.28 (45–93), based on the Kaufman Brief
Intelligence Test, 2nd edition (Kaufman & Kaufman,
2004). WS participants were recruited from a Williams
Syndrome National Convention and from a regional
Williams Syndrome Support Group. TD participants
were 160 younger (mean age = 7.9 years, range: 6.4–
8.9 years) and 81 older children (mean
age = 10.0 years, range: 9.0–11.2 years) who partici-
pated in our three benchmark studies (Opfer & Siegler,
2007; Opfer & Thompson, 2008; Thompson & Opfer,
2008), as well as 99 TD adults (mean age = 22.3) who
were enrolled in an introductory psychology class at a
large university. Consent was obtained from partici-
pants or their guardians, following institutional IRB
approval.

Tasks

Each participant was administered 22 number line
problems. Each problem consisted of a 20-cm line, with
the left end labeled 0 and the right end labeled 1000.
Appearing 2 cm above the center of the line was the
number to be estimated – 2, 5, 18, 34, 56, 78, 100, 122,
147, 150, 163, 179, 246, 366, 486, 606, 722, 725, 738, 754,
818, and 938. These numbers were chosen to maximize
discriminability of logarithmic and linear functions by
oversampling the low end of the range, to minimize the
influence of specific knowledge (such as that 500 is
halfway between 0 and 1000,) and – most importantly –
to allow direct comparisons between estimates of indi-
viduals with Williams syndrome in this study and
estimates of TD individuals in the benchmark studies
(Opfer & Siegler, 2007; Opfer & Thompson, 2008;
Thompson & Opfer, 2008).

Procedure

As in our benchmark studies, participants were tested in
a single session. The items within each scale were
randomly ordered, separately for each child, and pre-
sented in small workbooks, one problem per page. The
experimenter began by saying, “Today were going to play
a game with number lines. What I’m going to ask you to
do is to show me where on the number line some
numbers are. When you decide where the number goes, I
want you to make a line through the number line like this
(making a vertical hatch mark)”. Before each item, the
experimenter said, This number line goes from 0 at this
end to 1000 at this end. If this is 0 and this is 1000, where
would you put N?” The numbers were read aloud by the
experimenter before the participants made their estimate
to ensure that participants knew the number they were
estimating. This procedure was the same one used in the
benchmark studies with typically developing children.

Results and discussion

We first examined age differences in accuracy of numer-
ical estimates. To measure accuracy, we converted the
magnitude estimate for each number (the child’s hatch
mark) to a numeric value (the linear distance from the 0
mark to the child’s hatch mark), then divided the result
by the total length of the line, and multiplied the result
by 1000. The magnitude of each child’s error was
calculated by taking the mean absolute difference
between each of the child’s estimated values and the
actual values, and accuracy was calculated by subtract-
ing the magnitude of the error from 1.

As expected, accuracy of TD estimates increased with
age, r(340) = .67, p < .0001, from 78% for younger TD
children to 87% for TD adults. Accuracy of WS
estimates also increased with age, r(30) = .46, p < .001,
increasing from 67% for WS children to 72% for WS
adults. Thus, accuracy of both WS and TD individuals’
numerical estimates improved with age.

To determine whether age-related improvements in
accuracy were associated with the hypothesized logarith-
mic-to-linear shift, we next compared the fit of the
logarithmic and linear regression functions to partici-
pants’ median estimate for each number. Among TD
children, younger children’s median estimates were better
fit by the logarithmic function (R2 = .96) than by the fit
of the linear function (R2 = .75), whereas older children’s
median estimates were better fit by the linear function
(R2 = .99) than by the logarithmic (R2 = .73). Similarly,
WS children’s median estimates were also better fit by
the logarithmic regression function (R2 = .78) than by
the linear function (R2 = .38; Figure 1A). Unlike TD
older children and adults’, however, WS adults median
estimates were better fit by the logarithmic regression
(R2 = .80) than by the linear (R2 = .47; Figure 1B).
Thus, although both TD and WS estimates were initially
fit by the logarithmic function, there was no evidence of
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the logarithmic-to-linear shift in participants with WS,
suggesting that development was arrested roughly at the
level of typically developing 6-year-olds.

To ensure that analyses of group medians reflected
individual performance, we also regressed individuals’
estimates on each task against the predictions of the best
fitting linear and logarithmic functions. We assigned a 1
to the model that best fit each participant’s estimates
and a 0 to the other model. The function that provided
the better fit to individual participant’s estimates varied
in ways that mirrored the findings with the group
medians, X2(3) = 102.5, p < .0001. That is, the logarith-
mic function provided the best fit for the large majority
of WS individuals (80% of WS children, 93% of WS
adults) and 80% of TD younger children, whereas the
logarithmic function provided the better fit for only 16%
of TD older children. Thus, the individual patterns of
estimates – like the group data – supported the hypoth-
esis that WS individuals fail to develop linear numerical-
magnitude representations.

If linearity of numerical estimates among WS individ-
uals failed to increase over a period of 50 years (i.e. from
ages 6 to 56), then why might estimation accuracy
nevertheless improve with age? Comparison of Fig-
ures 1A and 1B suggests a clue: although both WS
children and WS adults increase their estimates of
numerical magnitude logarithmically with number, esti-
mates of WS children appear systematically higher than
those of WS adults and further from the ideal linear
function, y = x. Indeed, a paired t-test of estimates
confirms this inspection, t(22) = 5.74, p < .0001, with
20/22 of WS children’s median estimates being greater
than those of WS adults.

These results suggest that WS individuals might
improve their estimates with age and experience – not
by adopting linear representations of number, as TD
children did in our benchmark studies – but by reacting
to error signals (i.e. feedback regarding the direction
and/or magnitude of the estimation error) with piece-
meal (downward) adjustments in estimation behavior.

Put another way, by relying on a logarithmic mental
number line, both WS and TD children’s errors may be
biased toward overestimation (e.g. placing 150 where 720
would go, not where 150 would go), and in everyday life,
adult reactions to these overestimates could provide an
error signal (e.g. “that’s too many!” when children return
with all the possible spoons when asked for just 15
spoons). To improve future accuracy, children could
revise their estimates to increase linearly with actual
magnitude (as older TD children appeared to have done)
or lower their estimates overall (as WS adults appeared
to have done). If true, this observation is important
theoretically because age-related lowering of estimates –
without increasing linearity – is certainly an atypical
developmental path; it is, however, also an effective
strategy for improving accuracy of the early logarithmic
estimates depicted in Figure 1A.

In summary, Experiment 1 yielded three main findings.
First, as in TD children, estimation accuracy of children
with WS improvedwith age, with the initial inaccuracy of
estimates by WS children and TD children tied to their
use of logarithmic representations of numerical value.
Second, unlike older TD children and adults, WS adults
continued to rely on logarithmic representations, even
after many years of age and experience. Finally, we were
able to identify a large number of WS individuals whose
estimates were best fit by a logarithmic function, which
allowed us to directly examine the impact of feedback on
their estimates in Experiment 2 and thus test our
hypothesis about how WS and TD children respond
differently to the same experiences.

Experiment 2: Short-term changes in WS and TD
estimates of numerical magnitude

Experiment 2 was designed to compare short-term
developmental changes in WS and TD individuals in
terms of four key dimensions of cognitive change: the
source, rate, path, and variability of change. These

(a) (b)

Figure 1 Experiment 1: Age-group differences in numerical estimates. Among younger children (panel A), median estimates of both
WS and TD children increased logarithmically with value. Among older children and adults (panel B), median estimates of TD
children increased linearly with value, whereas estimates of WS adults increased logarithmically. Estimates of WS adults were lower
than WS children.
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dimensions have been proposed as central aspects of
change and have proved useful in describing cognitive
change in a wide variety of contexts (for reviews, see
Siegler, 2006). To test the idea that feedback is an
important source of change, we compared the amount of
improvement in estimation between the feedback and
no-feedback groups. To examine the rate of change, we
measured how many feedback problems children
required in each condition before they adopted a linear
numerical-magnitude representation. To learn about the
path of change, we tested whether children showed an
abrupt shift from a logarithmic pattern to a linear
pattern of estimates or whether they progressed from a
clear logarithmic pattern to a pattern intermediate
between the two functions to a clear linear pattern.
Finally, to enhance understanding of the variability of
change, we examined the relation between children’s IQ
and estimation performance.

Method

Participants

Individuals with WS were the same participants who
participated in Experiment 1. Typically developing con-
trols included 96 children (mean age = 7.9 years, range:
6.4–8.9 years) who participated in identical conditions
from three previous microgenetic studies of number line
estimation – Opfer and Siegler, 2007 (150-feedback
condition, n = 13; no-feedback condition, n = 15); Opfer
and Thompson, 2008 (treatment conditions, n = 15;
control conditions, n = 22); and Thompson and Opfer,
2008 (treatment condition, n = 16; control condition,
n = 15).More information on the controls can be found in
the published benchmark studies.

Tasks

The number line task described in Experiment 1 was also
used in Experiment 2.

Procedure

Immediately after Experiment 1, WS participants who
did not generate linear estimates were randomly assigned

to one of two groups: one group received feedback
during the training phase (WS feedback group, n = 16 (9
children, 7 adults); average age = 23.1 years; range = 7–
56 years), whereas the other group did not receive
feedback (WS no-feedback group, n = 11 (5 children, 7
adults); average age = 22.4 years; range = 9–48 years).
(Slightly different sample sizes across conditions
occurred in Experiment 2 because WS participants were
randomly assigned to condition before linearity of
estimates could be assessed.) In our benchmark studies
of typically developing children, 44 children (average
age = 7.92) received feedback and 52 children (average
age = 7.94) did not.

As shown in the outline of the procedure in Table 1,
participants in both groups completed the number line
estimation task for a pretest, three training trial blocks
and a posttest. The purpose of these three phases
(pretest, training trial blocks, and posttest) was to
examine the course of learning prior to posttest (i.e. to
examine changes from the number line pretest through
posttest). On the number line pretest and posttest,
children in the feedback and no-feedback groups were
presented with the same 22 problems without feedback.
For children in the feedback group, each training trial
block included a feedback phase and a test phase. As
shown in Table 1, the feedback phase of each training
trial block included either one item on which children
received feedback (Trial Block 1) or three items on which
they received feedback (Trial Blocks 2 and 3). The test
phase in all three training trial blocks included 10 items
on which children did not receive feedback; this test
phase occurred immediately after the feedback phase in
each training trial block. Children in the no-feedback
group received the same number of estimation problems,
but they did not receive feedback. On posttest, children
in all groups were presented with the same 22 problems
without feedback as in Experiment 1. The children’s
estimates in Experiment 1 provided pretest data, which
were used as a point of comparison for their subsequent
performance and were elicited during the same session.

Feedback was administered to the individuals with WS
following the same procedure used in our three bench-
mark studies (Opfer & Siegler, 2007; Opfer & Thompson,
2008; Thompson & Opfer, 2008). On the first feedback

Table 1 Design of Experiment 2

Group

Phase

Trial Block 1 Trial Block 2 Trial Block 3
Posttest

Feedback1 (1 item) Test (10 items) Feedback1 (3 items) Test (10 items) Feedback1 (3 items) Test (10 items) (22 items)

150-feedback 150 0–1000 147–187 0–1000 147–187 0–1000 0–1000
No-feedback 150, 5, or 725 0–1000 147–187,

2–42, or
723–763

147–187,
2–42, or
723–763

0–1000 0–1000

1During the Feedback phase, the WS participants in the no-feedback group were asked to estimate the positions of the same numbers as the WS
participants in the 150-feedback group.
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problem, participants were told, “After you mark where
you think the number goes, Ill show you where it really
goes, so you can see how close you were”. After the
participant answered, the experimenter wrote the num-
ber corresponding to the child’s estimate (E) above the
mark, and indicated the correct location of the number
that had been presented (N) with a hatch mark, using a
small plastic ruler that had the correct positions of
numbers indicated. This allowed us to quickly indicate
the number corresponding to the S’s hatch mark and the
correct placement of each number on the number line.
The procedure took a very short amount of time (15–
20 seconds at most), and we have used it successfully
with TD children in several previous experiments. For
example, if a child were asked to mark the location for
150 (i.e. N) and his estimate corresponded to the actual
location of 600 (i.e. E), the experimenter would write the
number 600 above the child’s mark and mark where 150
would go on the number line. After this, the experi-
menter showed the corrected number line to the child.
Pointing to the child’s mark, she said, “You told me that
N would go here. Actually, this is where N goes
[pointing]. The line that you marked is where E actually
goes”. When children’s answers deviated from the
correct answer by no more than 10%, the experimenter
said, “You can see these two lines are really quite close”.
When children’s answers deviated from the correct
answer by more than 10%, the experimenter told the
child, “That’s quite a bit too high/too low. You can see
these two lines [the child’s and experimenters hatch
marks] are really quite far from each other”.

Results and discussion

We organized our results into four sections: first, we
report on the conditions that led to changes in numerical
estimation (source of change); next, how quickly those
changes occurred (rate of change); then, approaches that
children used up to and following the use of adult
approaches (path of change); finally, individual differ-
ences in these variables (variability of change).

Source of change

We first examined the source of change in WS estimation
performance on the number line task. Specifically, we
wanted to test whether the experiences that WS partic-
ipants received during training improved estimation
accuracy and influenced the degree to which those
estimates came to follow a linear function. To find out,
we performed a 2 (treatment: feedback, no-feedback) 9
2 (test-phase: pretest, posttest) repeated-measures ANOVA
on accuracy scores (0 to 1). As expected, we found a
treatment by test-phase interaction, F(1, 26) = 5.02,
p < .05. Post-hoc analyses indicated that accuracy of
WS estimates improved reliably from pretest (M = 69%,
SD = .09) to posttest (M = 72%, SD = .08) for the
feedback group, t(15) = 2.25, p < .05, Cohen’s

d = 0.37, whereas accuracy did not increase from pretest
(M = 68%, SD = .07) to posttest (M = 67%, SD = .07)
for the no-feedback group, t(10) = 1.0, ns. Thus, a short
session of feedback on WS estimation performance
engendered similar changes in accuracy as many years
of ordinary experience.

We next examined whether short-term changes in WS
estimation accuracy were also accompanied by the
logarithmic-to-linear shift previously observed in TD
children (Figure 2). As in TD children (Figures 2C and
2F), we found that estimates of WS individuals in both
the feedback group and no-feedback groups initially
provided median estimates for each number that were fit
better by the logarithmic regression function than by the
linear one (see Figure 2, Panels A, B, D, and E). For
these pretest estimates, the precision of the fit of the
logarithmic function, and the degree of superiority of
that function to the linear function, was nearly identical
among the WS feedback (log R2 = .78; lin R2 = .38), and
the WS no-feedback (log R2 = .79, lin R2 = .36) groups.
Although the precision of fit was somewhat higher
overall for TD children, the superiority of the fit of the
logarithmic to linear functions to TD children’s esti-
mates (feedback: log R2 = .96, lin R2 = .76; no feedback:
log R2 = .95, lin R2 = .70) was much like that in the
participants with WS.

After receiving feedback, however, estimates of the WS
groups differed from those of TD groups who had
received the same feedback. Unlike TD controls (Fig-
ure 2C), WS children in the feedback (Figure 2A) and
no-feedback (Figure 2D) groups continued to generate
estimates that fit the logarithmic function better than the
linear one (WS feedback: log R2 = .83, lin R2 = .37; WS
no-feedback: log R2 = .67, lin R2 = .20). That is, feed-
back improved WS accuracy but did not engender a
logarithmic-to-linear shift. If anything, feedback
increased both the absolute degree to which estimates
of WS participants were fit by the logarithmic function
as well as the relative fit of the logarithmic function to
the linear one. That this change from pretest to posttest
was a response to feedback is indicated by the fact that a
similar pretest-to-posttest change was not evident in the
no-feedback groups (Figures 2D and 2E). Thus,
although feedback led to a logarithmic-to-linear shift
in TD children (Figure 2C), feedback did not lead to a
similar shift in WS children (Figure 2A) or adults
(Figure 2B). In fact, the observed responses to feedback
were similar to the age-related changes observed in
Experiment 1, suggesting atypical development of
changes in both age and experience in individuals with
WS.

If feedback did not improve accuracy by engendering
a logarithmic-to-linear shift in WS participants, how did
WS participants in the feedback group improve their
estimates from pretest to posttest? Again, the explana-
tion for short-term changes in WS estimation accuracy
might be similar to the long-term changes in WS
estimation accuracy. That is, WS participants in the
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feedback group (like older WS individuals) could attain
greater accuracy than the control group simply by
lowering their estimates of numerical value across the
number range. Consistent with this analysis, WS chil-
dren’s estimates in the feedback group were consistently
lower on posttest than on pretest, t(21) = 5.40,
p < .0001. In contrast, WS children’s estimates in the
no-feedback group were neither lower nor higher from
pretest to posttest, t(21) = 1.07, ns. Thus, feedback
engendered an atypical change in WS children’s esti-
mates.

Rate of change

To address the rate of change in numerical estimation,
we used logistic regression to examine the relation
between generation of more linear than logarithmic
patterns of estimates (linear model fitting best or not)
and number of trial blocks of feedback (0–4), where 0
corresponded to the trial block prior to the administra-
tion of the treatment and thus 0 trials of feedback. First,
we examined the effect of trial block for the feedback
group of TD children. For TD children, there was a
significant positive effect of trial block for the feedback
group, indicating that with each additional trial block
the likelihood of generating linear estimates was 2.71

times more likely than the previous one, z = .50,
z = 5.03, Wald (2, N = 220) = 36.9, p < .0001. A similar
analysis found no significant effect of trial block for WS
children (whether receiving feedback or not), indicating
that trial blocks of feedback did not increase the odds of
WS individuals generating linear estimates. As illus-
trated in Figure 3, the low rate of change in WS
individuals who generated logarithmic estimates on
pretest differed greatly from the rate of change in
similarly performing TD children, whereas it did not
differ from the rate of change in WS individuals who
also initially generated logarithmic estimates but did not
receive feedback.

Path of change

Inspection of Figure 3A suggests that one reason trial-
to-trial changes in WS individuals were so modest
compared to TD individuals is that TD children were
better at retaining the gains made after a single trial
of feedback. Consistent with this idea, the proportion
of individuals whose estimates were best fit by the
linear function was never higher than after the first
trial of feedback, and the decline in that proportion
from that first trial of feedback to the last trial block
was nominally much greater in the WS feedback

(a) (b) (c)

(d) (e) (f)

Figure 2 Experiment 2: Pre- to posttest changes in numerical estimates. From pretest (black series) to posttest (grey series), only
estimates of TD children who received feedback (panel E) were characterized by a logarithmic to linear shift.
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group (38% to 19%) than in the TD feedback group
(77% to 72%). This observation is potentially impor-
tant. If WS individuals are quite poor at retaining new
information about numerical magnitudes, it could
explain why so little change occurs over many years
of development.

To test this idea, we examined the fit of the linear
regression function to each individual child’s numerical
estimates as a function of the number of trials that
elapsed since the linear function provided a better fit
than the logarithmic (i.e. when the logarithmic to linear
shift was thought to occur). To measure this, we
identified the first trial block on which the linear
function provided the best fit to a given individual’s
estimates, and we labeled it trial block 0. The trial block
immediately before each child’s “trial block 0” was that
child’s trial block !1, the trial block before that was the
child’s trial block -2, and so on.

These assessments of the trial block on which chil-
dren’s estimates first fit the linear function made possible
a backward-trials analysis that allowed us to test
alternative hypotheses about the path of change from a
logarithmic to a linear representation (Figure 3B). One
hypothesis, suggested by incremental theories of repre-
sentational change (Barth & Paladino, 2010), was that
the path of change entailed gradual, continuous
improvements in the linearity of estimates (and thus
the fit of the linear regression function to their esti-
mates). According to this hypothesis, the fit of the linear
model would have gradually increased, from Trial Block
!3 to Trial Block +3. In this scenario, Trial Block 0 – the
first trial block in which the linear model provided the
better fit – would simply mark an arbitrary point along a
continuum of gradual, trial block-to-trial block improve-
ment, rather than the point at which children first chose
a different representation.

A second hypothesis was that the path of change
involved a discontinuous switch from a logarithmic to a
linear representation, with no intermediate state. This
would have entailed no change in the fit of the linear

model from Trial Block !3 to !1, a large change from
Trial Block !1 to Trial Block 0, and no further change
after Trial Block 0. This second hypothesis clearly fit the
data from TD children. From Trial Block !3 to !1,
results of a Kruskal-Wallis test indicated no change in
the fit of the linear function across these trial blocks
(p’s > .1). There also was no change from Trial Block 0
to Trial Block 3 (p’s > .1). However, from Trial Block !1
to Trial Block 0, there was a large increase in the fit of
the linear function to individual TD children’s estimates,
from a median R2 = .52 to a median R2 = .80 (difference
in rank sum = 48.22, p < .01). Thus, rather than Trial
Block 0 reflecting an arbitrary point along a continuous
path of improvement, it seemed to mark the point at
which TD children switched from a logarithmic repre-
sentation to a linear one.

We next tested whether the path of change for WS
individuals also involved a discontinuous switch from a
logarithmic to linear representation. Against this
hypothesis, results of a Kruskal-Wallis test indicated no
change in the fit of the linear function across any of the
possible pairs of trial blocks (ps > .5). Thus, even when
100% of WS individuals were best fit by the linear
function (Trial Block 0), the fit of the linear function was
quite small (WS, mean lin R2 = .32; TD, mean lin
R2 = .80; Mann Whitney U = 127, p < .0001) and did
not persist across trial blocks. This apparent lack of a
discontinuous increase in linearity is another marked
difference between TD and WS individuals.

Variability of change

In the previous sections, we observed that changes in
numerical estimation – from pretest to posttest and from
trial to trial – differed between the average WS individual
and average TD child. In this section, we examined
whether IQ of WS individuals might account for none,
some, or all of these differences in the change trajectory.

To examine whether IQ moderated pretest-to-posttest
changes in number line estimation, we used WS

(a) (b)

Figure 3 Experiment 2: Rate and path of change. In Panel A, the proportion of children generating linear patterns of estimates
rapidly increased among TD children, but not WS children and adults. In Panel B, the linearity of TD children’s estimates increased
abruptly and remained stable, whereas linearity of WS children’s estimates increased little and was not stable.
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participants’ composite scores on the KBIT-2. These
scores provided us with two groups to compare: 11
participants with borderline to average scores (i.e.
scoring 70–99, identified as the ‘higher IQ group’) and
16 participants with mild intellectual disability to mod-
erate intellectual disability (i.e. scoring 40–69, identified
as the ‘lower IQ group’).

As is evident in Figure 4, estimates of both groups
were better fit by the logarithmic than by the linear
function on both pretest (higher IQ group, log R2 = .84,
lin R2 = .36; lower IQ group, log R2 = .81, lin R2 = .39)
and posttest (higher IQ, log R2 = .73, lin R2 = .26; lower
IQ, log R2 = .81, lin R2 = .33). In addition, the propor-
tion of individual participant’s estimates best fit by the
linear function on posttest did not differ across the two
IQ groups (higher IQ group, 18%; lower IQ group, 13%),
nor did composite (or raw) IQ scores correlate with
linearity of estimates on posttest (r = .07, ns). Thus,
among WS children, higher intelligence scores were not
associated with the logarithmic to linear shift seen in TD
participants.

Rather than higher intelligence scores being associated
with a logarithmic to linear shift, inspection of Figure 4
suggests that higher IQ was associated simply with
greater lowering of estimates. Consistent with this
conjecture, paired t-tests confirmed that estimates were
consistently lower on posttest than pretest for both the
higher IQ group (t[21] = 10.89, p < .0001) and the lower
IQ group (t[21] = 4.72, p < .0001), but the magnitude of
change was greater for the higher IQ group (t[42] = 5.60,
p < .0001). This difference between the higher and lower
IQ groups is interesting because it parallels the difference
between WS adults and children in Experiment 1 and the
difference between the feedback and no-feedback groups
in Experiment 2. That is, with greater IQ, greater age,
and greater experience, WS participants estimated the
magnitudes of numbers on number lines simply as being
lower. As we have seen, this lowering of estimates did
improve estimation accuracy, but it did so without the
logarithmic-to-linear shift that characterized TD
children.

General discussion

Previous work has indicated that development of linear
representations of numerical magnitudes profoundly
expands typically developing children’s quantitative
thinking (Opfer, Siegler & Young 2011). It improves
their ability to estimate the positions of numbers on
number lines (Opfer & Siegler, 2007; Siegler & Opfer,
2003; Siegler & Booth, 2004), to estimate the measure-
ments of continuous quantities (Booth & Siegler, 2006;
Thompson & Siegler, 2010) and the quantity of discrete
objects (Opfer, Thompson & Furlong, 2010), to catego-
rize numbers according to size (Laski & Siegler, 2007;
Opfer & Thompson, 2008), to estimate and learn the
answers to arithmetic problems (Booth & Siegler, 2008),
and to remember numbers encountered through stories
and first-hand experiences (Thompson & Siegler, 2010;
Thompson & Opfer, 2011; Young et al., 2011).

In this paper, we examined long- and short-term
changes in the numerical-magnitude estimates of chil-
dren and adults with Williams syndrome. Given persis-
tent mathematical deficits in WS individuals (Ansari
et al., 2007; Howlin et al., 1998; Paterson et al., 2006)
and structural abnormalities in WS cortical regions
associated with numerical-magnitude representations
(Boddaert, Mochel, Meresse, Seidenwurm, Cachia,
Brunelle, Lyonnet & Zilbovicius, 2006; Eckert, Hu,
Eliez, Bellugi, Galaburda, Korenberg, Mills & Reiss,
2005; Kippenhan, Olsen, Mervis, Morris, Kohn, Meyer-
Lindenberg & Berman, 2005; Meyer-Lindenberg, Kohn,
Mervis, Kippenhan, Olsen, Morris & Berman, 2004), we
had expected differences in numerical estimation to exist
between TD and WS individuals, yet it was not clear
what those differences might be and how they might
manifest over development. To examine this issue, we
investigated long-term changes in numerical estimation
that occurred over many years (Experiment 1) and short-
term changes that occurred in response to instructive
experiences (Experiment 2).

Across both time scales, we found several similarities
in the development of numerical estimation among

(a) (b)

Figure 4 Median estimates of both lower IQ (panel A) and higher IQ (panel B) WS children increase logarithmically with actual
value on pretest and posttest. In higher IQ WS individuals, posttest estimates were lower than pretest.
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individuals with WS and TD individuals. In both WS
and TD groups, we observed that accuracy of numerical
estimates improved with age (Experiment 1) and with
instructive experiences (Experiment 2). Further, we
observed that estimates of younger TD and WS children
were actually quite similar (Figure 1). In both groups,
estimates of numerical magnitude increased logarithmi-
cally with the actual value of numbers. Further, 80% of
children in each group generated estimates that were
better fit by the logarithmic than linear function. Thus,
the chromosomal deletions typifying WS did not appear
to prevent WS children in this study from learning to
improve their estimates of numerical magnitude nor to
cause WS children to deviate from the normal pattern of
estimating numerical magnitudes to increase logarithmi-
cally with actual value. These results suggest that, at least
in the 0–1000 number line context, numerical-magnitude
representations of WS individuals are more like those of
TD 6- to 9-year-olds than TD 3- to 6-year-olds or TD
9- to 12-year-olds.

Several differences between WS and TD individuals
were also observed to exist in the development of
numerical estimation. First, although estimates of WS
and TD individuals were initially fit by the logarithmic
function, we found no evidence among WS individuals of
the typical logarithmic-to-linear shift over a period of
50 years (i.e. from ages 6 to 56). That is, even adults with
WS continued to estimate numbers to increase logarith-
mically with actual value (Experiment 1), and this
estimation pattern was observed in WS individuals of
all ages (and IQs) even after considerable training
(Experiment 2). These results are consistent with the
arrested development that has been observed in many
aspects of spatial representation, as noted by Landau and
colleagues (Landau, 2011; Landau & Hoffman, 2007).

A second difference noted between WS and TD
individuals was in their respective responses to the
experience of feedback, where the responses of WS
individuals followed an atypical developmental path.
That is, after observing that they had estimated the
magnitude of (say) 150 as being too high, WS individuals
responded by lowering all their subsequent estimates
while continuing to scale the numbers logarithmically. In
contrast, TD individuals responded by lowering their
subsequent estimates, too, but spontaneously scaled the
numbers linearly, typically after a single trial of feedback.
Moreover, this difference in responding to feedback
could not be attributed to WS individuals’ low IQ; as IQ
increased in the WS group, the probability of this
atypical response to feedback only increased. (Although
we do not have the data to address the issue, it seems
unlikely that TD children with high IQs would respond
similarly.) These results suggest that the chromosomal
deletions typifying WS may prevent the development of
linear numerical-magnitude representations that typi-
cally occurs as school-children gain experience with the
decimal system. Moreover, this atypical response to
experience is apparently not unique to number line

estimation. In their study of spatial reasoning, for
example, Hoffman et al. (2003) also found individuals
with WS adopting atypical strategies once they had
observed their errors in a block construction task. Thus,
it seems possible that atypical responses to experience
more generally could play a large role in preventing
individuals with WS from progressing down the typical
developmental path.

How might the deficits of WS prevent the develop-
ment of linear numerical-magnitude representations?
Admittedly, any answer is speculative. One possibility is
that WS is associated with a general (non-numeric)
impairment in magnitude representations. Providing
evidence against this idea, however, Farran (2006)
examined discrimination of line lengths in WS adoles-
cents and adults and found evidence of a distance effect
among WS adolescents and adults that was quite similar
to what Moyer (1973) found in TD adolescents and
adults. Thus, it seems unlikely that visual magnitude
representations are as impaired in WS as are numeric
magnitude representations (e.g. O’Hearn & Landau,
2007). One way to explain this uneven developmental
progression among WS individuals is that symbolic
magnitude representations are impaired in WS. To
examine non-numeric symbolic magnitude representa-
tions, Moyer (1973) showed pairs of animal names (e.g.
‘COW-ANT’) to TD participants and asked them to
name the larger animal. Here, the psychophysical func-
tion was very close to what Moyer had observed for line
length, suggesting a common magnitude representation
for symbolic and non-symbolic items. An interesting
question for future studies is whether a general impair-
ment in symbolic magnitude representation is present in
WS children and adults.

Another (somewhat complementary) possibility is that
delays in numerical-magnitude representations in WS
persist because structural abnormalities in parietal cortex
inhibit development of linear numerical-magnitude rep-
resentations that characterize TD adults. Among TD
adults, for example, detecting the correct placement of
numbers on number lines is strongly associated with
posterior parietal activity, at least compared with detec-
tion of the correct placement of non-numerical stimuli
(Kanayet, Opfer & Cunningham, 2010), and this same
cortical area is broadly reported to represent numeric
magnitudes (Cantlon, Brannon, Carter & Pelphrey, 2006;
Houd!, Rossi, Lubin & Joliot, 2010; Piazza et al., 2004).
Further, among WS adults, structural and functional
abnormalities are evidentwithin parietal cortex, especially
within the IPS region (Boddaert et al., 2006; Eckert et al.,
2005; Kippenhan et al., 2005; Meyer-Lindenberg et al.,
2004; Reiss, Eckert, Rose, Karchemskiy, Kesler, Chang,
Reynolds, Kwon & Galaburda, 2004; Van Essen, Dierker,
Snyder, Raichle, Reiss & Korenberg, 2006). Thus,
although overall brain volume is reduced inWS (Martens,
Wilson, Dudgeon & Reutens, 2009; Reiss, Eliez, Schmitt,
Straus, Lai, Jones & Bellugi, 2000; Reiss et al., 2004),
compared toCA-matched controls, parietal regions inWS

© 2012 Blackwell Publishing Ltd.

872 John E. Opfer and Marilee A. Martens



showa significant decrease in graymatter (Boddaert et al.,
2006; Eckert et al., 2005; Meyer-Lindenberg et al., 2004),
with reduced sulcal depth noted in the IPS (Kippenhan
et al., 2005). Thus, previous studies with adults are
consistent with the idea that an abnormally functioning
posterior parietal cortex inWS individualsmay cause them
to fail to recognize the linear placement of numbers on
number lines (such as those presented inExperiment 2) and
to learn to use this linear placement in their own estimates.

Still another potential reason for the lack of learning
linear numerical-magnitude representations in WS indi-
viduals is a deficiency in cognitive resources that have
nothing to dowith quantity at all. For example, analogical
reasoning has been implicated in the abilityof TD children
to learn linear numerical-magnitude representations for
large numbers (Opfer & Siegler, 2007; Thompson&Opfer,
2010), and verbal analogies are known to be difficult for
children with WS to perform accurately (Porter & Colt-
heart, 2005). Indeed, in other domains where analogical
reasoning plays an important role (e.g. in acquisition of an
adult living things concept; Opfer & Siegler, 2004),
individuals with WS were also reported to fail to show
the pattern of conceptual change observed in TD individ-
uals (Johnson & Carey, 1998). Although we observed no
correlation between one kind of analogical reasoning
(matrix completion) and learning of linear numerical-
magnitude representations, it seems clear that further
research is needed to evaluate this possibility as well.

In conclusion, a combination of cross-sectional and
microgenetic data yielded an unusually clear and consis-
tent description of how developmental changes in
numerical estimation do and do not differ between TD
and WS individuals. These findings indicate that both
TD and WS individuals improve the accuracy of their
numerical estimates with age and experience, but that
only TD individuals show a shift from logarithmic to
linear representations of numerical magnitude. Whether
learning without representational change is specific to
the numeric domain, to domains involving symbolic
magnitude, or to domains requiring analogical insights,
however, remains an important issue for future research.
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