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a b s t r a c t

Children’s number-line estimation has produced a lively debate about representational change, sup-
ported by apparently incompatible data regarding descriptive adequacy of logarithmic (Opfer, Siegler,
& Young, 2011) and cyclic power models (Slusser, Santiago, & Barth, 2013). To test whether methodolog-
ical differences might explain discrepant findings, we created a fully crossed 2 ! 2 design and assigned 96
children to one of four cells. In the design, we crossed anchoring (free, anchored) and sampling (over-,
even-), which were candidate factors to explain discrepant findings. In three conditions (free/over-
sampling, free/even-sampling, and anchored/over-sampling), the majority of children provided estimates
better fit by the logarithmic than cyclic power function. In the last condition (anchored/even-sampling),
the reverse was found. Results suggest that logarithmically-compressed numerical estimates do not
depend on sampling, that the fit of cyclic power functions to children’s estimates is likely an effect of
anchors, and that a mixed log/linear model provides a useful model for both free and anchored numerical
estimation.

! 2015 Elsevier B.V. All rights reserved.

1. Introduction

In this paper, we attempt to reconcile seemingly incompatible
data (Barth & Paladino, 2011; Opfer & Siegler, 2007; Opfer,
Siegler, & Young, 2011; Slusser, Santiago, & Barth, 2013) regarding
the psychophysical functions that link numbers to children’s esti-
mates of numerical magnitude.

The psychophysical functions that link numbers to subjects’
estimates of numerical magnitude are both theoretically and prac-
tically important. Of theoretical interest, functions generating
young children’s numerical magnitude estimates have been
observed in non-symbolic number discrimination of a wide range
of species (for review, see Nieder & Dehaene, 2009), to change
abruptly with limited experience (Izard & Dehaene, 2008; Opfer
& Siegler, 2007), and to closely track abilities to deal with numbers
in other contexts (Booth & Siegler, 2006; Thompson & Siegler,
2010). Thus, just as animals can better discriminate 1 and 10
objects than 101 and 110 objects, so too do children estimate mag-
nitudes of symbols 1 and 10 to differ more than 101 and 110. These
results suggest that (1) across development, numerical symbols are
linked to an innate ‘‘mental number line” that allows infants and

other animals to discriminate numbers and match them across
modalities (see Fig. 1) and (2) linking between symbolic numbers
and mental magnitudes is plastic and undergoes significant change
(Opfer & Siegler, 2012).

Psychophysical functions linking numbers and estimates of
numerical value have also emerged as practically important.
Specifically, functions generating children’s numerical estimates
correlate highly with real-world behavior, including children’s
memory for numbers, ability to learn arithmetic facts, math grades
in school, and math achievement scores (Booth & Siegler, 2006,
2008; Fazio, Bailey, Thompson, & Siegler, 2014; Siegler &
Thompson, 2014; Siegler, Thompson, & Schneider, 2011). These
findings suggest that children’s representations of numerical mag-
nitude play an important role in development of mathematical
ability and should be a target for educational interventions.

What psychophysical functions are most likely to generate esti-
mates of numerical value? Across a wide range of tasks and age
groups (for review, see Opfer & Siegler, 2012), we have observed
two functions as being most likely contenders: the logarithmic
function given by Fechner’s Law and a standard linear function
(see Appendix A)3. For example, on number-line estimation tasks,
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children are shown a blank line flanked by two numbers (e.g., 0 and
1000) and asked to estimate the position of a third number. Because
line length itself is not psychophysically compressive or expansive
(Lu & Dosher, 2013), the task provides a relatively straightforward
method for assessing compression in numerical magnitude
representations.

In many number-line estimation studies, a logarithmic-to-
linear shift has been observed. For example, on a 0–1000 task, sec-
ond graders’ median estimates were best fit by a logarithmic func-
tion, whereas sixth graders’ and adults’ median estimates were
best fit by the linear function; similarly, over 90% of individual sec-
ond graders’ estimates were better fit by the logarithmic than lin-
ear function, whereas the reverse was true of sixth graders and
adults (Siegler & Opfer, 2003). This developmental sequence has
been observed at different ages with different numerical ranges.
It occurs between preschool and kindergarten for the 0–10 range,
between kindergarten and second grade for the 0–100 range,
between second and fourth grade for the 0–1000 range, and
between third and sixth grade for the 0–100,000 range
(Berteletti, Lucangeli, Piazza, Dehaene, & Zorzi, 2010; Opfer &
Siegler, 2007; Siegler & Booth, 2004; Thompson & Opfer, 2010).
Similar transitions occur roughly a year later for children with
mathematical learning difficulties (Geary, Hoard, Byrd-Craven,
Nugent, & Numtee, 2007). Timing of the changes corresponds to
periods when children are gaining extensive exposure to numerical
ranges: through counting during preschool for numbers up to 10,
through addition and subtraction between kindergarten and sec-
ond grade for numbers through 100, and through all four arith-
metic operations in later elementary school.

Against the idea of a logarithmic-to-linear shift, however, Barth
and colleagues (Barth & Paladino, 2011; Slusser et al., 2013) have
recently presented evidence that estimates of numerical value
may follow cyclic power functions rather than being truly Fechne-
rian logarithmic functions or arithmetically correct linear func-
tions. For example, on a 0–100 number line task, estimates of 7-
year-olds were found to follow a 2-cycle power function originally
described by Hollands and Dyre (2000). Indeed, fit of the 2-cycle
power function was strongest for 7-year-olds’ (R2 = .968) and 8-
year-olds’ (R2 = .995) estimates on the 0–1000 number line task,

which we examine in our present study. Further, rather than
observing an abrupt, single-trial increase in linearity (as reported
in Opfer & Siegler, 2007), Barth and colleagues observed a gradual,
age-related increase in value of the exponent of the power func-
tion. If true, these quantitative findings are theoretically important.
First, they suggest that commonalities between estimates of sym-
bolic and non-symbolic magnitude may be illusory, with estimates
of symbolic magnitude being affected by children’s prior knowl-
edge of proportions (e.g., 500 is half of 1000). Second, they suggest
that changes in numerical magnitude estimates are quantitative (in
the sense that one parameter in the same function changes over
time) rather than qualitative (in the sense that different functions
are needed to describe younger versus older children’s estimates).

1.1. Why different functions? Sampling versus anchoring

To illustrate differences between data cited in support of the
logarithmic-to-linear shift account and the proportion-judgment
account, it is useful to compare 7- and 8-year-olds’ number-line
estimates on the 0–1000 task (Fig. 2), where Slusser et al. (2013)
found a better fit for the 2-cycle power function over the logarith-
mic, despite the logarithmic function providing a better fit in data
collected by Opfer and Siegler (2007). Given that children’s ages
and numeric ranges were the same, something must explain these
discrepant findings.

One potential cause of the discrepancy is methodological differ-
ences in sampling (Barth, Slusser, Cohen, & Paladino, 2011; Slusser
et al., 2013), with fit of the logarithmic function being an artifact of
sparsely sampling at the upper ranges (e.g., obtaining few esti-
mates for numbers 750–1000) and heavily sampling at lower
ranges (e.g., obtaining many estimates for numbers 0–250). As
Slusser et al. (2013) write, ‘‘there is a resounding tendency for
researchers to sample heavily from the lower end of the number
line and scarcely from the upper end. . .. This practice focuses on
participants’ propensity to overestimate small numbers, but yields
little data to reveal the details of underestimation patterns for lar-
ger numbers” (p. 4). This observation has potential force. As can be
seen in Fig. 2, Opfer and Siegler (2007) collected estimates for 13
numbers in the 0–250 range and 3 numbers in the 750–1000
range, whereas Slusser et al. (2013) collected estimates for 7 num-
bers in each range.

Another potential cause of the discrepancy is methodological
differences in anchoring (Opfer et al., 2011), with fit of the 2-
cycle power function being an effect of experimenters telling chil-
dren the placement of 500. In the typical number-line task (Siegler
& Booth, 2004; Siegler & Opfer, 2003, Exp. 1; Booth & Siegler, 2006,
Exp. 2; Laski & Siegler, 2007; Opfer & Martens, 2012; Opfer &
Siegler, 2007; Opfer & Thompson, 2008; Thompson & Opfer,
2008; though see Siegler & Booth, 2004, Exp. 2, and Booth &
Siegler, 2006, Exp. 1, for use of anchors), children are given no
supervision on any of their number line placements. In contrast,
in all studies finding a superior fit of the 2-cycle power function,
children’s estimate of the halfway point is anchored. For example,
in Slusser et al. (2013), children were told, ‘‘Because 500 is half of
1000, it goes right in the middle between 0 and 1000. So 500 goes
right there, but it’s the only number that goes right there.” Given
previous training studies (Opfer & Siegler, 2007; Opfer &
Thompson, 2008; Thompson & Opfer, 2008) finding that a single
trial of feedback can increase linearity of estimates, such anchors
seem highly likely to affect children’s estimates.

While these two potential causes of the discrepancy in findings
are not mutually exclusive, each cause has different theoretical
implications. From the logarithmic-to-linear-shift account, differ-
ences in sampling are predicted to be minor because oversampling
has only a small impact on absolute fits and no impact on model
selection. In contrast, from the proportion-judgment account, dif-

Fig. 1. Model of early numerical magnitude representations (from Opfer & Siegler,
2012).
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ferences in anchoring are predicted to be minor because if children
naturally use proportional anchors (e.g., 500 as half of 1000),
anchors tell children nothing new. Thus, in addition to helping to
explain the discrepancy in previous results, an effect of either sam-
pling or anchoring is meaningful.

1.2. The current study

To test the impact of anchoring and sampling on fit of the log-
arithmic and 2-cycle power functions to children’s number line
estimates, we created a fully crossed 2 ! 2 design and assigned
96 children to one of four conditions. Two of these conditions were
direct replication attempts of previous findings: free/over-
sampling was a direct replication of Opfer and Siegler (2007),
and anchored/even-sampling was a direct replication of Slusser
et al. (2013). In these two cells, we expected to replicate previous
findings (i.e., best fit by logarithmic function for free/over-
sampling; best fit by 2-cycle power function for anchored/even-
sampling as in Fig. 2). The remaining two conditions had not been
tested previously. For the over-sampling/anchored cell, both the
logarithmic-to-linear-shift and proportion-judgment accounts
expect slightly worse fits of their preferred models (though for dif-
ferent reasons). Thus, the most interesting condition is the free/
even-sampling cell. If fit of the logarithmic function is simply an
artifact of over-sampling, estimates in this condition are expected
to be best fit by a 2-cycle power function. In contrast, if fit of the
cyclic power function is an effect of anchoring, estimates are
expected to be best fit by a logarithmic function.

2. Method

2.1. Participants

Participants were 96 first and second grade students
(M = 7.62 years, SD = 0.59 years; 55% females; 74% Caucasian, 8%
Biracial, 6% Asian, 5% African American, 4% Native American, and
2% Hispanic) who attended one of five public elementary schools
in Norman, OK. Two female research assistants presented the
procedure.

2.2. Procedure and design

All children completed the estimation task one-on-one with a
trained experimenter. For each problem, children were shown a
21.8-cm line, with left endpoint labeled 0 and right endpoint
labeled 1000. Children’s task was to estimate the position of a third
number by making a hatch mark on the line.

Children differed in the numbers that they estimated and
instructions they received. Specifically, children were randomly

assigned to one of four fully-crossed experimental conditions that
differed with respect to the numbers they estimated (over-
sampling/even-sampling conditions) and whether information
was given about the location of 500 (anchored/free conditions).

In the oversampling conditions, children were asked to estimate
positions of 2, 5, 18, 34, 56, 78, 100, 122, 147, 150, 163, 179, 246,
366, 486, 606, 722, 725, 738, 754, 818, and 938. These numbers
had been used in Opfer and Siegler (2007). In the even sampling
conditions, children were asked to estimate positions of 3, 7, 19,
52, 103, 158, 240, 297, 346, 391, 438, 475, 525, 562, 609, 654,
703, 760, 842, 897, 948, 981, 993, and 997. These numbers had
been used in Slusser et al. (2013).

In the anchored conditions, children received these instructions
(adapted from Slusser et al., 2013): ‘‘This task is with number lines.
There will be a number up here. [Researcher pointed to top left cor-
ner of blank number line data sheet where the to-be-estimated
number was located.] Your job is to showme where that number goes
on a number line like this one. Each number line will have a 0 at this
end [Researcher pointed to 0.] and 1000 at the other end [Researcher
pointed to 1000.]. When you decide where the right place for the
number is, I want you to make a mark through the line like this.
[Researcher made a vertical hatch mark in the air in front of child.]
Can you show me where 0 goes? Great! Now, can you show me where
1000 goes? [Researcher provided corrective feedback if participant
did not mark right location for these two numbers.] So if this is 0,
and this is 1000, where would you put 500? [Researcher provided
corrective feedback on location of 500.] Because 500 is half of
1000, it goes right in the middle between 0 and 1000. So 500 goes right
there [Researcher pointed to vertical hatch mark that indicated cor-
rect location of 500], but it’s the only number that goes there. I am
going to show you a lot of numbers, so just mark where you think each
one should go. Don’t spend too long thinking about each one. I will
read you the number above the line, and then you should decide where
that number goes. Are you ready to give it a try?”

Children assigned to the free conditions received the same
instructions except these children were not asked to estimate 500,
and thus were not given amidpoint anchor to guide their estimates.

3. Results

To ensure that our random assignment to condition resulted in
equivalent groups, we first confirmed that age did not differ signif-
icantly by experimental condition, F(1,92) = .41, p > .05.

3.1. Comparison of logarithmic and 2-cycle power models

Following Slusser et al. (2013)’s analyses of the 0–1000
number-line tasks, we calculated the fit of the logarithmic and 2-
cycle model power models to median estimates, compared them

A B

Fig. 2. Discrepant results in 0–1000 number-line estimation: A. Pretest number-line estimates from Opfer & Siegler, 2007; B. Number-line estimates redrawn from Slusser
et al. (2013).
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using AICc, and we calculated the proportion of individual children
who were best fit by the logarithmic model using AICc and BIC. As
illustrated in Table 1, the results from the free/over-sampled con-
dition replicated those found in Opfer and Siegler (2007), with the
logarithmic model being the more likely data-generating model
(>99.99%) for median estimates and providing a better fit for 83%
of children’s estimation patterns. Results from the anchored/
even-sampled condition also replicated those found by Slusser
et al. (2013), with the 2-cycle power model being the more likely
data-generating model (99%) for median estimates and providing
a better fit to 71% of participants’ estimation patterns. Thus, our
current findings replicate the discrepant ones reported in Opfer
and Siegler (2007) and Slusser et al. (2013).

Results from the remaining two conditions were critical for
revealing the source of discrepancy between the free/oversampling
and anchored/even-sampling conditions. As expected, when chil-
dren were tested with anchors and oversampling, both the abso-
lute R2 of the logarithmic and 2-cycle power models was
reduced, as well as the relative differences. This suggests either
that oversampling penalizes the power function (Slusser et al.,
2013), that anchors increase linearity of estimates (Opfer &
Thompson, 2008; Thompson & Opfer, 2008), or both. The last con-
dition – presenting children with no anchors and even sampling –
addresses these possibilities, with the result that the 2-cycle power
model recovered somewhat in overall fit but with logarithmic
model still being more likely (98.7%) to be the data-generating
function for median estimates and 67% of individual children’s esti-
mates being best fit by the logarithmic model. Thus, rather than
the fit of the logarithmic model being an artifact of the numbers
tested, numerical estimates – when free of anchors – appear to fol-
low a logarithmic function.

3.2. Toward a unified approach for free and anchored numerical
estimation

Why might a midpoint anchor raise the relative fit of the 2-
cycle power function to be equal or greater than the logarithmic
function? One possibility, suggested by Opfer and Siegler (2007),
is that a midpoint anchor causes 7-year-olds to improve their esti-
mates overall (thereby increasing fit of the linear function) because
the position of 500 on a 0–1000 number line is like the position of
50 on a 0–100 number line, where 7-year-olds already place num-
bers linearly. An interesting implication of this idea is that both
free and anchored numerical estimation might be predicted using
the mixed log-linear model suggested by Anobile et al. (2012) for
estimates of non-symbolic number, which predicts estimates as
the sum of weighted logarithmic and linear components (see
Appendix A). If this view were correct, the weight of the logarith-
mic component (k) would be expected to be lower in the anchored
conditions than the free conditions.

Another possibility is that distinct estimation strategies are
used depending on age and the provision of anchors. For example,
following Hollands and Dyre’s (2000) account, the 1-cycle and
2-cycle power models are appropriate when subjects use the
strategy of comparing a number either to both end-points alone
(1-cycle) or with the addition of a central reference anchor
(2-cycle). To detect the use of a mix (any mix, from 0% to 100%
1-cycle) of these two strategies, Hollands and Dyre (2000) pro-
posed a mixed cyclic power model. Additionally, both Slusser
et al. (2013) and Hollands and Dyre (2000) hypothesized the strat-
egy of using only a single endpoint, in which case a 0-cycle power
model would be predicted to fit data, and thereby require an exten-
sion of the mixed 1-cycle and 2-cycle model. Hollands and Dyre
themselves foresaw the need for this adaptation, and they
described a procedure for extending their model, which we
followed to include a component for a 0-cycle power model

(Appendix A). Thus, if this view were correct, the weights of the
0-cycle component (w1) and 1-cycle component (w2) would be
expected to be lower in anchored conditions than the free condi-
tions, whereas the weight of the 2-cycle component (1 "
[w1 + w2]) would be greater in the anchored conditions than the
free conditions.

By comparing the fit of the mixed log-linear and mixed cyclic
power models to data in our four conditions, we were thereby able
to test for multiple strategies of numerical estimation and to test
rival explanations for the effect of anchors. Table 2 provides the
parameter estimates for each model across conditions. Table 3 pro-
vides details on the model comparison statistics.

As illustrated in Table 3 and Fig. 3, the mixed cyclic power
model (MCPM) appears much less suited for providing a unified
model of numerical estimation than the mixed log-linear model
(MLLM). First, despite being simpler, the MLLM had very high fits
to median estimates across all four conditions (R2s .95–.97), and
provided the best fitting function to the majority of individual sub-
jects across all four conditions as well. In contrast, the 6-parameter
MCPM had very high fits for three conditions, but it had a relatively
poor fit in the free/oversampled condition (R2 = .64).

More importantly, the MCPM appears to overfit data much
more than the MLLM. This is most evident in the highly variable
parameter estimates in Table 2. For example, the b-parameter of
the MCPM (like the k-parameter of the MLLM) is thought to index
the degree of compression or expansion in the mental scaling of
numeric magnitude. However, the estimated b-values associated
with the one- and two-cycle components ranged roughly 30-fold
across conditions (from a highly compressive .33 to a highly expan-
sive 9.66), varied as greatly among subjects within the same condi-
tion, and with no discernible pattern. Indeed, even the b-value
associated with the zero-cycle power component (which is quite
similar to the mixed log-linear model) did not correlate with age
or condition. This is concerning because it indicates that the
parameters of the model do not have a clear psychological mean-
ing, and it cautions against overinterpretation of the b-value as a
marker of developmental changes in numerical magnitude repre-
sentations. In contrast, the k-parameter of the MLLM showedmuch
less variability among subjects, and a systematic decrease (from
logarithmic to linear) as a function of age (r(94) = ".34, p < .001)
and anchors, t(94) = 2.39, p < .05, d = .15 (Fig. 3). Moreover, results
remained much the same even after the number of free parameters
in the MCPM was reduced to 4 by making the three sub-power
models share the exponent b (see Appendix A). Thus, though the
MCPM was indeed favored for median estimates (but not the
majority of individual estimates) in one of the four conditions, it
is difficult to see how the model parameters map onto a psycholog-
ical reality that can unify findings regarding diverse forms of
numerical estimation or provide a coherent depiction of numerical
magnitude representations.

Table 1
Statistics from median group estimates and percent of participants who were best fit
by the log model.

Statistics from median estimates % participants
best fit by the
log model

R2 DAICc p (log) AICc BIC

Log 2-cycle

Free
Over-sampled .95 .00 "62.89 >99.99 83.33 83.33
Even-sampled .83 .72 "8.73 98.74 66.67 66.67

Anchored
Over-sampled .83 .81 .31 46.10 58.33 58.33
Even-sampled .70 .93 35.84 .01 29.17 29.17
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4. Discussion

In this paper, we sought to reconcile seemingly incompatible
data (Barth & Paladino, 2011; Opfer & Siegler, 2007; Opfer et al.,
2011; Slusser et al., 2013) regarding the psychophysical functions
that link numbers to children’s estimates of numerical magnitude.
Specifically, we sought to identify influences of sampling and
anchoring on the absolute and relative fits of power and logarith-
mic functions. Additionally, we sought to test whether a mixed
log-linear model suggested by Anobile et al. (2012) provided a use-
ful framework for understanding both free and anchored numeri-
cal estimation.

The results of our study indicate that young children’s free esti-
mates of numerical magnitude do tend to increase logarithmically
with actual value. This finding held regardless of whether numbers

Table 2
Mean estimates (and SDs) for parameter values from the mixed log-linear model (MLLM) and mixed cyclic power model (MCPM).

MLLM MCPM

a k a w1 b1 w2 b2 1 " (w1 + w2) b3

Free
Over-sampled .81 (.15) .75 (.34) "140.52 (353.62) .03 (.07) .53 (.57) .82 (.28) 6.09 (22.04) .15 (.27) 3.10 (11.75)
Even-sampled .81 (.10) .55 (.36) "249.08 (442.97) .06 (.21) .37 (.28) .72 (.35) 4.79 (20.89) .21 (.30) 6.22 (21.48)

Anchored
Over-sampled .80 (.09) .59 (.31) "83.35 (352.81) .01 (.02) .33 (.31) .72 (.29) 1.43 (5.38) .28 (.29) 4.66 (21.10)
Even-sampled .80 (.11) .37 (.33) "245.85 (427.65) .12 (.20) .58 (.64) .40 (.29) 9.66 (28.74) .48 (.33) .47 (.40)

Table 3
Statistics from median group estimates and percent of participants who were best fit
by the mixed log-linear model (MLLM).

Statistics from median estimates % participants
best fit by the
MLLM

R2 DAICc p(MLLM) AICc BIC

MLLM MCPM

Free
Over-sampled .95 .64 "55.22 99.99 100.00 100.00
Even-sampled .97 .96 "17.93 99.99 100.00 100.00

Anchored
Over-sampled .96 .96 "16.92 99.98 91.67 91.67
Even-sampled .95 .99 15.65 .00 66.67 66.67

Fig. 3. Median estimates by age group (1st vs. 2nd grade) and experimental condition. A mixed log-linear regression model provided an excellent fit across conditions, with
the degree of logarithmicity (k) being reduced by age group, even-sampling, and anchors.
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that were presented to children oversampled the low end of the
range or sampled all numbers equally. This result is not consistent
with the speculation of Barth et al. (2011) and Slusser et al. (2013)
that superiority of fit of the logarithmic function to the cyclic
power function is an artifact of sampling. This was an important
issue to test because the only previous study examining the rela-
tive fits of the two models to free estimates (Opfer et al., 2011)
had relied on data that used over-sampling and found that over
90% of 576 individual children’s estimates were fit by the linear
and logarithmic functions better than cyclic power functions. Thus,
we can be confident that a logarithmic-to-linear shift exists in free
numerical estimation.

Results also suggest that it is not very likely that young children
spontaneously make use of numerical proportions when estimat-
ing positions of numbers on number lines. This is a key claim of
the proportion-judgment account of numerical estimation, and it
guides the choice of models for testing. Against this view, however,
few second graders know that 500 is half of 1000. Thus, telling
them this fact in the context of number-line estimation is likely
to have a large effect on their estimates. Consistent with this idea,
only 33% of children making free estimates (with even sampling)
were best fit by the two-cycle power function, whereas 70% of chil-
dren making anchored estimates (with even sampling) were best fit
by the cyclic power function (Table 1). This result would not be
expected if children already knew the proportions being given by
Slusser et al. (2013) in their instructions to children.

As a framework for modeling both free and anchored number-
line estimates, the mixed log-linear model suggested by Anobile
et al. (2012) proved useful. Indeed, when we compared this mixed
log-linear model to a mixed cyclic power model that incorporates a
simple power function, a one-cycle power function, and a two-
cycle power function, the simpler log-linear model best fit 100%
of children’s free estimates and 67–92% of children’s anchored esti-
mates (Table 3). Additionally, the parameter values of the mixed
log-linear model corresponded to the predicted effects of age and
condition (i.e., lower k-values with age and anchors), whereas the
b-values of the mixed cyclic power model varied wildly and with
no discernable pattern. These results suggest that the k-value of
a mixed log-linear model is more appropriate for gaining insights
into developmental changes in the mental scaling of numeric mag-
nitude than are the b-values of the mixed cyclic power function.

Beyond these issues of modeling, however, results suggest that
anchors have a powerful effect on children’s number-line esti-
mates. We found that the largest impact of anchors was to increase
linearity of estimates (regardless of sampling), not to cause chil-
dren’s estimates to follow some mixture of power functions. This
result is consistent with a number of training studies of children’s
number-line estimates (Opfer & Siegler, 2007; Opfer & Thompson,
2008; Thompson & Opfer, 2008), where anchors were chosen
strategically to highlight how far logarithmic number line place-
ments depart from accuracy. Indeed, the importance of anchors –
and midpoint anchors in particular (Parducci, 1968) – for estima-
tion is a well-established phenomenon (Tversky & Kahneman,
1974). An important conclusion from these studies and the present
study is that estimates of numerical magnitude are plastic and
modifiable by experience. Given that linearity of children’s numer-
ical estimates correlates highly with real-world behavior, including
children’s memory for numbers, their ability to learn arithmetic
facts, their math grades in school, and their math achievement
scores (Booth & Siegler, 2006, 2008; Fazio et al., 2014; Siegler &
Thompson, 2014; Siegler et al., 2011), the present results suggest
that providing anchors for numerical magnitude judgments could
have an important effect on children’s general math proficiency
as well.
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