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How does understanding the decimal system change with age and experience? Second, third, sixth graders,
and adults (Experiment 1: N = 96, mean ages = 7.9, 9.23, 12.06, and 19.96 years, respectively) made number
line estimates across 3 scales (0–1,000, 0–10,000, and 0–100,000). Generation of linear estimates increased with
age but decreased with numerical scale. Therefore, the authors hypothesized highlighting commonalities
between small and large scales (15:100::1500:10000) might prompt children to generalize their linear represen-
tations to ever-larger scales. Experiment 2 assigned second graders (N = 46, mean age = 7.78 years) to experi-
mental groups differing in how commonalities of small and large numerical scales were highlighted. Only
children experiencing progressive alignment of small and large scales successfully produced linear estimates
on increasingly larger scales, suggesting analogies between numeric scales elicit broad generalization of linear
representations.

The ratio structure of the decimal system—where
‘‘1’’ denotes a quantity 1 ⁄ 10 of 10, ‘‘10’’ a quantity
1 ⁄ 10 of 100, ‘‘100’’ a quantity 1 ⁄ 10 of 1,000, and so
forth—may apply to an infinity of numbers, but
even over a lifetime, experience of symbolic num-
bers is finite. And more, experiences are also sys-
tematically biased, with numerals in the first order
of magnitude (1–9) appearing much more frequently
than numerals in the second order (10–99), which
occurs more frequently than in the third order (100–
999), and so forth (Dehaene & Mehler, 1992). This
cross-linguistic regularity in frequency of symbolic
numbers—observed in languages as diverse as
American English, Catalan, Dutch, French, Japanese,
Kannada, and Spanish—has been observed across
forms of notation (Arabic or written number words),
for cardinal numbers (1, 2, 3) as well as ordinals
(first, second, third), and in both text and speech.

This cross-linguistic regularity in frequency of
symbolic numbers has two interesting implications
for how children might develop their representa-
tions of numerical magnitude. The first developmen-
tal implication is that relative frequencies of
numerals in the environment place a constraint on
how broadly children extend their understanding of
the decimal system. Specifically, children learning to
map numerals to magnitudes would be expected to
fail to realize that ratios that hold at smaller, more
familiar orders of magnitude (e.g., relative magni-
tudes of 15 cherries and 100 cherries) extend to lar-
ger orders of magnitude (e.g., relative magnitudes of
1,500 and 10,000) with which they are less familiar.

The second implication is that if developing
representations of large numerical magnitudes are
constrained by poverty of input described by
Dehaene and Mehler (1992), no inherent cognitive
constraint would prevent rapid and broad repre-
sentational changes from occurring in children. The
crucial source of change in this account is children
encountering information that relations among
numbers at large orders of magnitude are similar to
relations at small orders of magnitude (e.g.,
150:1,000::15:100), much like relations at small
orders of magnitude are similar to each other
regardless of units involved (e.g., 15 cherries:100
cherries::15 pears:100 pears). If true, such findings
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would be scientifically important because it could
reconcile two sets of seemingly contradictory
findings—slow rate of representational changes
observed in cross-sectional studies (e.g., Siegler &
Opfer, 2003; logarithmic-to-linear switch in numeric
representations between second and fourth grade
on 0–1,000 number line problems) and one-trial
representational changes observed in microgenetic
studies (e.g., Opfer & Siegler, 2007; second graders’
adoption of a linear representation after maximally
discrepant feedback is presented). That is, represen-
tational change in the domain of numbers may be
driven by children’s ability to draw an analogy
between small and large orders of magnitude, and
previous research has indicated that direct feedback
may highlight this analogy of the decimal system
for children (Opfer & Siegler, 2007).

Previous evidence supporting the first conjecture
about children’s developing understanding of this
property of the decimal system—as well as poten-
tial for improvement coming from comparison of
small and large orders of magnitude—comes from
interindividual variability in magnitudes children
associate with a given number. When asked to
place numbers on a number line flanked by 0 and
100, for example, second graders provided Siegler
and Opfer (2003) with a set of estimates that were
highly accurate and increased linearly with
numeric value. When asked to place the same num-
bers on a number line flanked by 0 and 1,000, how-
ever, these same children provided estimates that
were much less accurate, with estimates increasing
logarithmically with numeric value. Thus, across
contexts, the magnitude ‘‘15’’ was estimated as hav-
ing different relations to 100 and 1,000. Moreover,
this variability appeared to reflect variability in
children’s thinking about numeric magnitude
rather than ‘‘noise’’ attributable to measurement
error: Given no feedback, children’s numerical
magnitude estimates on a number line are highly
stable from trial to trial (Opfer & Siegler, 2007;
Opfer & Thompson, 2008; Thompson & Opfer,
2008).

To address these two implications more directly,
Experiment 1 was designed to test how broadly
children spontaneously apply linear representations
on number lines with large numeric anchors (e.g.,
0–1,000, 0–10,000, and 0–100,000). To test whether
analogy could serve as a mechanism of develop-
mental change across numeric representations,
Experiment 2 examined whether progressive align-
ment—a means of fostering analogies in young
children (Gentner, Loewenstein, & Hung, 2007;
Kotovsky & Gentner, 1996)—led numeric represen-

tations used at small numerical scales (0–100) to be
generalized to progressively larger numerical scales
(0–1,000, 0–10,000, and 0–100,000) simply by high-
lighting perceptual similarities across these numeric
contexts.

In the next sections, we will detail (a) develop-
ment of numeric representations across the life
span, (b) analogy as a mechanism of developmental
change across numeric representations, and (c) more
specific empirical questions that were examined in
the present studies.

Development of Numerical Representations

Children normally improve their understanding
about magnitudes denoted by symbolic numerals
across a wide range of tasks (e.g., number line esti-
mation, number categorization, magnitude judg-
ments, etc.). Development of numerical
representations appears to occur iteratively, with
parallel developmental changes occurring over
many years and across many contexts (Siegler,
Thompson, & Opfer, 2009). For example, sixth
graders’ estimates on 0–1,000 number lines increase
linearly (Siegler & Opfer, 2003), whereas second
graders’ estimates increase logarithmically (Opfer
& Siegler, 2007; Opfer & Thompson, 2008; Siegler &
Opfer, 2003; Thompson & Opfer, 2008). On 0–100
number lines, second graders’ estimates increase
linearly (Geary, Hoard, Byrd-Craven, Nugent, &
Numtee, 2007; Geary, Hoard, Nugent, & Byrd-Craven,
2008; Siegler & Booth, 2004; Siegler & Opfer, 2003),
whereas kindergartners’ estimates increase logarith-
mically (Siegler & Booth, 2004). Asked to estimate
0–10 chips from a pile of chips, kindergartners’ esti-
mates increase linearly, but preschoolers’ estimates
increase logarithmically (Opfer, Thompson, &
Furlong, 2010). Further evidence for logarithmic-
to-linear shifts in numerical magnitude representa-
tions have also been discovered when (a) children
were asked to estimate candies in a container,
(b) estimate salaries given in fractional notation,
(c) provide answers to arithmetic problems,
(d) make measurements of novel units, and (e) cate-
gorize and compare symbolic numbers (Booth &
Siegler, 2006; Laski & Siegler, 2007; Opfer &
DeVries, 2008; Opfer & Thompson, 2008;
Thompson & Opfer, 2008).

Children’s initial expectations that numerical
magnitudes increase logarithmically are theoreti-
cally interesting because these expectations are
consistent with Fechner’s law. That is, just as sensa-
tions increase logarithmically with stimulus inten-
sity (Fechner’s law), representations of numeric
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magnitude also increase logarithmically with actual
value (Dehaene, 2007). For instance, the difference
between 1 and 10 cherries seems larger (or is more
quickly detected) than the difference between 101
and 110 cherries, much as these numbers would be
spaced on a logarithmic ruler (Dehaene, Dehaene-
Lambert, & Cohen, 1998). This logarithmic represen-
tation of numerical magnitude is not unique to
young children making estimates on number lines
but is widespread across tasks (estimation of set
sizes, numeric comparisons, random number gener-
ation, and economic games), across species (pigeons,
rats, nonhuman and human primates), and across
age groups (infants, children, and time-pressured
adults; Banks & Hill, 1974; Brannon, 2005; Feigen-
son, Dehaene, & Spelke, 2004; Furlong & Opfer,
2009; Gallistel & Gelman, 1992; Moyer & Landauer,
1967; Roberts, 2005; Xu & Spelke, 2000).

Children’s learned expectations that numerical
magnitudes increase linearly are not just theoreti-
cally interesting but also have practical effects on
their school achievement. For instance, linearity of
children’s number line estimates correlates strongly
with how quickly they compare magnitudes (e.g., is
5 or 7 greater; Laski & Siegler, 2007), their ability to
learn solutions to unfamiliar addition problems
(Booth & Siegler, 2008), and their overall scores on
mathematics achievement tests (Booth & Siegler,
2006; Siegler & Booth, 2004). Playing numeric board
games (akin to Chutes and Ladders) has also been
shown to impact preschoolers’ ability to compare
numerical value and to produce accurate answers
to arithmetic problems (Griffin, Case, & Siegler,
1994; Ramani & Siegler, 2008; Siegler & Ramani,
2008, 2009). Thus, not only does the development
of linear representations of numerical magnitude
present an interesting scientific problem, it is also
one with important educational consequences, an
importance underlined by recommendation of the
National Mathematics Advisory Panel to embrace
practices that foster ‘‘number sense,’’ including
ability ‘‘to estimate orders of magnitude’’ (U.S.
Department of Education, 2008, p. 18).

Analogy as a Mechanism of Developmental Change
Across Numeric Representations

By what mechanism might children abandon use
of a logarithmic representation of numerical magni-
tude for use of a linear representation? Across
many areas of cognitive development, an important
mechanism for representational change is analogy,
where elements in a target domain may share
structural relations with a base domain despite lack

of perceptual overlap among elements in the target
and base domains (Chen & Klahr, 1999; Gentner
et al., 1997; Holyoak & Thagard, 1995; Opfer &
Siegler, 2004, 2007).

Although young children may initially have dif-
ficulty solving analogical reasoning problems (see
Abdellatif, Cummings, & Maddux, 2008, for a
recent review of the factors affecting the develop-
ment of analogical reasoning in young children), a
number of factors can improve analogical reasoning
in children such as: (a) asking children to solve
problems with familiar examples or familiar rela-
tions (e.g., loaf of bread:single slice of bread::
lemon:___; Goswami & Brown, 1990), (b) providing
direct instruction on higher order relations through
the use of relational language (e.g., ‘‘Daddy,
Mommy, and Baby’’ for sizes big, medium, and
small; Rattermann & Gentner, 1998), (c) explaining
classic analogies of the format A:B::C:D (e.g., noting
the relation between A and B and the similarity
between A and C and B and D; Alexander, Willson,
White, & Fuqua, 1987), (d) training children to
solve a base problem and then asking them to
transfer this knowledge to solve a related target
problem (e.g., children are told a story about a
genie who moves jewels from one bottle to another
by rolling a ‘‘magic carpet’’ into a tube shape, and
then the children are asked to solve the problem of
moving gumballs from one bowl to another; Holy-
oak, Junn, & Billman, 1984), and (e) comparing
across various instances (e.g., Gentner & Namy,
1999).

Structure-mapping theory (Gentner, 1983) guides
our understanding of children’s analogical reason-
ing ability in the current experiments. According to
structure-mapping theory, children form analogies
by aligning representational elements between a
base and target domain. This alignment process
facilitates transfer of information from base to tar-
get through children’s comparison of surface-level
features. This comparison process leads to subse-
quent highlighting of common underlying rela-
tional structure shared by base and target (Kurtz,
Miao, & Gentner, 2001).

In progressive alignment (Gentner et al., 2007;
Kotovsky & Gentner, 1996)—a specific instantiation
of structure-mapping theory principles—compari-
sons made between highly similar elements can
promote subsequent analogical matches of lower
overall similarity. Analogical matches are thus pro-
moted because the process of aligning surface-level
elements highlights common underlying relational
structure. The alignment process makes this struc-
ture more salient and easily mapped from base to
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target domain even when participants are pre-
sented with less surface-similar matches.

According to Kotovsky and Gentner (1996), pro-
gressive alignment acts as a mechanism of repre-
sentational change by allowing children to make
similarity comparisons over concrete, perceptual
similarities (e.g., monotonic increase in size across
differently shaped stimuli). Then, these similarity
comparisons facilitate children’s ability to notice
higher order relational commonalities across stim-
uli possessing fewer surface-level features in com-
mon (e.g., increase in size as compared to
saturation of color across differently shaped stim-
uli). Thus, progressive alignment allows children to
recognize ‘‘richer and deeper’’ abstract relational
similarity uniting their mental representations that
may not have been immediately apparent before
similarity comparisons were made (Kotovsky &
Gentner, 1996).

Our general perspective on representational
change, drawn from computational models of cog-
nition (Doumas, Hummel, & Sandhofer, 2008; Gent-
ner, 1983; Hummel & Holyoak, 2003), historical
changes in scientific concepts (Gentner et al., 1997;
Holyoak & Thagard, 1995), and microgenetic stud-
ies of children’s concept learning (Opfer & Siegler,
2004, 2007) immediately suggested analogy as a
candidate mechanism for development of numeri-
cal representations. This hypothesis seemed espe-
cially likely to be true for number line estimates,
where structure of elements in a number line problem
(e.g., relation between right anchor and number to
be estimated) offers a systematic regularity over
orders of magnitude (e.g., 150:1,000::15:100).

Analogy was also suggested as a candidate
mechanism of representational change for second-
grade students in a recent number line training
study conducted by Opfer and Siegler (2007).
Although these second-grade students produced a
logarithmic series of estimates on 0–1,000 number
lines during pretest, when children received feed-
back on the placement of 150 (maximally discrepant
point between logarithmic and linear functions
forced to pass through 0 and 1,000), children imme-
diately generated a linear series of estimates for all
other numbers in the 0–1,000 numeric scale that
were tested. This abrupt and broad generalization
of learning—characteristic of analogical mapping
more broadly (Chen & Klahr, 1999; Gentner, Holy-
oak, & Kokinov, 2001; Holyoak & Thagard, 1995;
Opfer & Siegler, 2004)—led Opfer and Siegler to
speculate that children had improved their perfor-
mance by mapping commonalities between the less
familiar, larger scale (0–1,000) to the more familiar,

smaller scale (0–100) where children already pos-
sessed a linear representation.

In this article, we provided a novel test of Opfer
and Siegler’s (2007) hypothesis that analogy pro-
vides a mechanism for developmental changes in
representations of numerical magnitude. Our test
was unique in two important respects. First, if
children can draw an analogy between 0–100 and
0–1,000 number line problems, feedback that Opfer
and Siegler provided in the 0–1,000 scale would not
be necessary for children to improve their perfor-
mance on those problems. To test this issue, our
strategy for eliciting analogies from children was to
manipulate factors that would lead to comparisons
of number line problems, and we otherwise
avoided giving children feedback on target prob-
lems. Second, if children can extract general struc-
tural relations hypothesized by Opfer and Siegler
(i.e., 150:1,000::15:100), they should generalize far
outside the training space (e.g., from a 0–100 num-
ber line to a 0–100,000 number line), an issue that
Opfer and Siegler did not address.

Further, we have proposed that possession of a
numeric analogy between familiar, small numeric
scales (0–100) and unfamiliar, larger numeric scales
(0–1,000 and larger) can prompt children to scale
up a linear representation of number to unfamiliar
scales. Thus, familiarity with numeric context
(0–100) plays an important role in our explanation
of analogy as a mechanism of representational
change, but another model of children’s estimation
performance, the segmented linear model (Ebers-
bach, Luwel, Frick, Onghena, & Verschaffel, 2008),
suggests that a very different type of familiarity
affects children’s estimates.

According to Ebersbach et al.’s (2008) segmented
linear model, children’s familiarity with numbers
(indexed by their counting ability within a particu-
lar numeric scale) is a good predictor of shape of
the participants’ mental number line (e.g., linear or
logarithmic). That is, if participants are familiar
with the numeric context in which they are asked
to make estimates, the best fitting function of par-
ticipants’ number line estimates should be linear
with a greater slope than the scale with which they
are unfamiliar, thereby leading to a pattern of esti-
mates that appears logarithmic. Within this
account, apparent fit of the logarithmic model is
illusory, whereas a segmented linear model, con-
sisting of two simple linear regression functions
that intersect at a ‘‘change point’’ provides a better
model fit. Most impressively, ‘‘change point’’ in
this segmented linear model was correlated with
children’s counting range, suggesting the apparent
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fit of the logarithmic function may be a by-product
of children’s familiarity. In this article, we investi-
gate whether the assumptions of the segmented
linear model hold in larger numeric scales (e.g.,
0–10,000 and 0–100,000).

Issues Examined in Present Studies

The central purpose of the present studies was to
examine how broadly children spontaneously
apply linear representations on number lines with
large numeric anchors (e.g., 1,000, 10,000, and
100,000; Experiment 1) and to determine whether
aligning structure of small and large numeric scales
will prompt children to generalize linear represen-
tations more broadly than they would without such
alignment (Experiment 2).

The purpose of Experiment 1 was to determine
age differences in underlying representations that
children and adults used when making estimates
on number lines of increasing numerical magnitude
and track the developmental trajectory of partici-
pants’ linearization of estimates on number lines of
increasing magnitudes. To investigate these age dif-
ferences in numerical representations, we examined
second-, third-, and sixth-grade students’ number
line estimation performance in large numerical con-
texts (e.g., 0–1,000, 0–10,000, and 0–100,000) prior to
children receiving any corrective feedback from the
experimenter. These children’s results were then
compared to the performance of college-aged
adults who were asked to complete the same task.
From the results of Experiment 1, we also hoped to
identify an age group where there was a large
potential for generalizing a linear representation of
numbers to much larger orders of magnitude.
Experiment 1 also allowed us to investigate
whether the assumptions of Ebersbach et al.’s
(2008) segmented linear model held at larger orders
of magnitude (e.g., 0–10,000 and 0–100,000 scales).

In Experiment 2, we attempted to (a) determine
how widely children generalized linear representa-
tions of numerical magnitudes after they were
given feedback on the correctness of their estimates
on a smaller scale and (b) determine whether align-
ment of small and large numeric scales was suffi-
cient to produce generalization to larger numerical
contexts. To meet our goals for Experiment 2, we
brought number lines for large scales (0–1,000,
0–10,000, and 0–100,000) into progressive alignment
with scales that children already represented
linearly (0–100). The alignment procedure we used
is considered ‘‘progressive’’ in two senses. First,
all children’s comparisons were supported by

increasing perceptual similarity of small (training
problems) and large scales (generalization prob-
lems) by matching color of units and orders of
magnitude. Second, in our progressive alignment
and multiple exemplars conditions, children were
able to compare 0–100 problems with 0–1,000,
0–10,000, and 0–100,000 problems; in contrast, chil-
dren in the no alignment condition were not given
this opportunity. Finally, to test for representational
change, we examined numerical estimates on a
0–1,000 posttest, where children were not given
feedback, perceptual support, or the opportunity to
compare problems to smaller scales.

Experiment 1: Long-Term Changes in
Representations of Large Numerical Magnitudes

In Experiment 1, we investigated long-term changes
in children’s estimates of large numerical magni-
tudes (e.g., 940, 9,400, and 94,000) by examining
estimates of second graders, third graders, sixth
graders, and adults on 0–1,000, 0–10,000, and
0–100,000 number lines. Previously, number line
estimation results have shown parallel develop-
mental changes at different ages. Thus, a logarith-
mic-to-linear shift occurs between kindergarten and
second grade on 0–100 number lines (Siegler &
Booth, 2004), and between second and fourth grade
for estimates on 0–1,000 number lines (Siegler &
Opfer, 2003). In this study, we examined whether
yet another logarithmic-to-linear shift occurs among
children older than second graders on 0–10,000 and
0–100,000 number lines. This issue was important
because findings of parallel developmental changes
at older ages would suggest that for many years
children face the problem of not realizing when to
scale up their linear representation and would
thereby raise the scientific issue of how they might
make that realization.

Method

Participants. Participants were 24 second graders
(mean age = 7.9, SD = 0.33; 14 girls and 10 boys),
24 third graders (mean age = 9.23, SD = 0.36; 11
girls and 13 boys), 24 sixth graders (mean
age = 12.06, SD = 0.36; 12 girls and 12 boys), and
24 college-aged adults (mean age = 19.96, SD = 1.8;
16 women and 8 men). Children were recruited
from elementary schools in largely European Amer-
ican, middle-class suburbs surrounding two large
metropolitan cities in the United States. Adults
were recruited from an introductory psychology
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course at a large university in the same city. Chil-
dren participated in return for a small prize (e.g., a
sticker), whereas adults received credit toward their
introductory psychology course. One female gradu-
ate student and one female research assistant
served as experimenters.

Design and procedure. Children and adults were
given a number line estimation task that consisted
of a line flanked by two hatch marks where the left
hatch mark was labeled ‘‘0,’’ and right hatch mark
was labeled with either ‘‘1,000,’’ ‘‘10,000,’’ or
‘‘100,000’’ depending on experimental condition
(see Figure 1). Magnitude of overall scale (0–1,000,
0–10,000, and 0–100,000) was a between-subjects
variable to guard against order effects. Across all
conditions, participants were asked to estimate the
position of a third number that appeared above the
midpoint of the number line by making a hatch
mark through the line. To-be-estimated numbers
were chosen to maximize discriminability of loga-
rithmic and linear functions (i.e., by oversampling
at the low end of the scale) and to minimize influ-
ence of specific knowledge (e.g., 500 is halfway
between 0 and 1,000).

Participants were presented with 1 number line
estimation problem per page, which ensured that
participants were unable to reference their previous
estimates. Participants from each age group were
randomly assigned to one of three conditions
where they completed 10 number line estimation
problems, presented in random order and without
feedback from the experimenter: (a) in the 0–1,000
condition, participants estimated the magnitudes
20, 50, 80, 110, 150, 250, 490, 610, 730, and 940; (b)
in the 0–10,000 condition, participants estimated the
magnitudes 200, 500, 800, 1,100, 1,500, 2,500, 4,900,
6,100, 7,300, and 9,400; and (c) in the 0–100,000 con-
dition participants estimated the magnitudes 2,000,

5,000, 8,000, 11,000, 15,000, 25,000, 49,000, 61,000,
73,000, and 94,000.

Results and Discussion

We first examined accuracy of numerical esti-
mates across three experimental conditions. To
measure accuracy, we first converted the partici-
pant’s hatch mark to a numeric value by taking the
proportion of the line indicated by the participant
(i.e., linear distance from ‘‘0’’ mark to participant’s
hatch mark, divided by total length of line) and
then multiplied this proportion by the right numer-
ical anchor (1,000, 10,000, or 100,000). Then, percent
absolute error of each participant’s error (0%–100%)
was calculated by taking the mean absolute differ-
ence between each of the participants’ estimated
values and the actual values divided by the total
scale (1,000, 10,000, or 100,000). Finally, accuracy
scores were computed by subtracting percent abso-
lute error from 100%.

To analyze long-term changes in estimation accu-
racy, we conducted a 4 (age group: second graders,
third graders, sixth graders, adults) · 3 (scale:
1,000, 10,000, 100,000) analysis of variance (ANO-
VA) on accuracy scores. As expected, accuracy
increased with age, F(3, 95) = 27.43, p < .0001,
g2 = .74, and decreased with scale, F(2, 95) = 7.51,
p < .001, g2 = .13. These two main effects were also
qualified by a significant Age Group · Scale inter-
action, F(6, 95) = 2.38, p < .05, g2 = .13 (see
Table 1). Although third and sixth graders outper-
formed second graders on 0–1,000 and 0–10,000
number lines, third and sixth graders failed to out-
perform second graders on 0–100,000 number lines.
Thus, age group differences in estimation accuracy
depended on numerical context (cf. Siegler &
Opfer, 2003), with larger age differences present on
0–1,000 and 0–10,000 number lines than were
present on 0–100,000 number lines.

To examine whether age differences in estimation
accuracy for 0–10,000 and 0–100,000 number lines
were linked to the logarithmic-to-linear shift seen in
children’s estimates on 0–1,000 number lines (Opfer
& Siegler, 2007; Opfer & Thompson, 2008; Siegler &
Opfer, 2003; Thompson & Opfer, 2008) and 0–100
number lines (Booth & Siegler, 2006, 2008; Laski &
Siegler, 2007; Siegler & Booth, 2004; Siegler & Mu,
2008), we regressed participants’ median estimates
against the to-be-estimated number, and we com-
pared the fit of the best fitting linear and logarithmic
regression functions across the three age groups and
scales (see Figure 2). Consistent with previous usage
(e.g., Siegler & Opfer, 2003; Thompson & Opfer,

Figure 1. Experiment 1: Illustration of stimuli: (a) 0–1,000 scale,
(b) 0–10,000 scale, and (c) 0–100,000 scale.
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2008), median estimates were used to minimize the
impact of potential outliers at the group level
(although similar logarithmic and linear fits
were obtained when we used mean estimates in

Experiments 1 and 2). Across all three scales, second
graders’ median estimates were better fit by
logarithmic than linear regression functions (0–1,000:
logarithmic R2 = .91 > linear R2 = .82; 0–10,000:

Table 1

Accuracy of Numerical Estimates by Age Group and Condition

0–1,000 0–10,000 0–100,000

Age F(3, 31) = 10.92, p < .0001 F(3, 31) = 28.96, p < .0001 F(3, 31) = 6.36, p < .01

Adults, M = 96.2% > Sixth, M = 91%,

d = 1.36

Adults, M = 96.7% > Sixth, M = 89.2%,

d = 1.42

Adults, M = 96.3% > Sixth, M = 80.4%,

d = 1.84

Adults, M = 96.2% > Third M = 90.5%,

d = 1.12

Adults, M = 96.7% > Third, M = 85.6%,

d = 1.93

Adults, M = 96.3% > Third, M = 77.7%,

d = 2.65

Adults, M = 96.2% > Second, M = 80.3%,

d = 2.94

Adults, M = 96.7% > Second, M = 67.9%,

d = 5.91

Adults, M = 96.3% > Second, M = 73.8%,

d = 1.96

Sixth, M = 91% > Second, M = 80.3%,

d = 1.72

Sixth, M = 89.2% > Second, M = 67.9%,

d = 3.03

Third, M = 90.5% > Second, M = 80.3%,

d = 1.45

Third, M = 85.6% > Second, M = 67.9%,

d = 2.39

Figure 2. Experiment 1: Median estimates of second graders, third graders, sixth graders, and adults on 0–1,000, 0–10,000, and
0–100,000 number lines.
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logarithmic R2 = .85 > linear R2 = .59; 0–100,000:
logarithmic R2 = .84 > linear R2 = .66). Third grad-
ers’ median estimates, however, were better fit by
linear than logarithmic functions on 0–1,000 and
0–10,000 scales (0–1,000: linear R2 = .98 > logarith-
mic R2 = .83; 0–10,000: linear R2 = .97 > logarithmic
R2 = .90), but their median estimates on 0–100,000
number lines were better fit by logarithmic than by
linear regression functions (0–100,000: logarith-
mic R2 = .68 > linear R2 = .67). Finally, median esti-
mates on all three number lines were better fit
by linear than by logarithmic regression functions
for sixth graders (0–1,000: linear R2 = 1 > logarith-
mic R2 = .84; 0–10,000: linear R2 = .98 > logarithmic
R2 = .87; 0–100,000: linear R2 = .89 > logarithmic
R2 = .81) and adults (0–1,000: linear R2 = 1 > logarith-
mic R2 = .83; 0–10,000: linear R2 = 1 > logarithmic
R2 = .82; 0–100,000: linear R2 = 1 > logarithmic
R2 = .83).

To determine if the results at the group level
held at the individual level, we next regressed each
individual participant’s estimates against the actual
number using logarithmic and linear regression
functions, and we used logistic regression to exam-
ine the odds of providing linear series of estimates
as a function of age (see Figure 3). On 0–1,000 num-
ber lines, odds of generating linear estimates
tended to increase with age, b̂ ¼ :72, z = 1.90,
Wald(1, N = 32) = 3.60, p = .058, indicating that
with each year of age children were 2.05 times
as likely to generate linear series of estimates. On
0–10,000 number lines, odds of generating linear
estimates also increased with age, b̂ ¼ :68, z = 2.28,
Wald(1, N = 32) = 5.2, p < .05, indicating that with
each year of age children were 1.97 times as likely
to generate linear series of estimates. Finally, on
0–100,000 number lines, odds of generating linear

estimates increased with age, b̂ ¼ :35, z = 2.32,
Wald(1, N = 32) = 5.4, p < .05, indicating that with
each year of age children were 1.41 times as likely
to generate linear series of estimates.

In summary, estimation accuracy increased with
age, with age differences in accuracy being smaller
on progressively larger numerical scales. The same
pattern was also evident in the proportion of chil-
dren producing linear series of estimates. Within
each numerical scale, generation of linear series of
estimates increased with age, but the overall pro-
portion of children generating linear series of esti-
mates again decreased with progressively larger
scales. Thus, taken with previous results on numer-
ical estimation in 0–10 and 0–100 contexts, the
results of Experiment 1 point to a problem in
numerical estimation that is faced to some extent
by children from preschool to early adolescence:
How to recognize that the linear representation
used for small numbers is also appropriate to use
for large numbers?

Experiment 2: Effect of Progressive Alignment on
Representational Change

In Experiment 2, we investigated the effect of pro-
gressive alignment on children’s application of
linear representations to large numerical scales.
Results of Experiment 1 suggested that second grad-
ers would serve as ideal participants: Second graders
typically represent numbers as increasing linearly
on 0–100 number lines and logarithmically on
0–1,000 number lines (Siegler & Booth, 2004; Siegler
& Opfer, 2003), thereby making an analogy between
the two scales potentially effective in improving rep-
resentations for larger numbers. To test this idea, we

Figure 3. Experiment 1: Percentage of second graders, third graders, sixth graders, and adults who were best fit by the linear regression
function on 0–1,000, 0–10,000, and 0–100,000 number lines.
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examined effects of three training procedures to eli-
cit linear estimates from second graders on 0–1,000,
0–10,000, and 0–100,000 number lines. In all three
procedures, children were given feedback when
making estimates on 0–100 number lines. The critical
difference between procedures, however, was
whether and how 0–100 number lines were aligned
with 0–1,000, 0–10,000, and 0–100,000 number lines.
Our central hypothesis was that progressive align-
ment of small and large number lines would lead
children to change their estimates of numerical mag-
nitude on large number lines, despite being given no
direct feedback that they should do so.

We hypothesized that progressive alignment
would promote representational change in the fol-
lowing way. Participants should first make surface-
level comparisons across 0–100 training problems
and note that a particular numerosity should be
placed in the same location on the number line
regardless of whether the numerosity is presented
in the context of a blank 0–100 number line, a 0–100
pear line, a 0–100 cherry line, or a 0–100 carrot line.
Then, we hypothesized that participants should
note color of units (e.g., pears, cherries, carrots)
corresponding to differing orders of magnitude
(0–1,000 with one green zero, 0–10,000 with two red
zeros, and 0–100,000 with three orange zeros,
respectively), and this should subsequently high-
light the underlying decimal system (15 cher-
ries:100 cherries::1,500:10,000).

Method

Participants. Participants were 46 second graders
(mean age = 7.78, SD = 0.41) recruited from ele-
mentary schools in largely European American,
middle-class suburbs surrounding two large metro-
politan cities in the United States. There were 20
girls and 26 boys that participated in return for a
small prize (e.g., a sticker). One female graduate
student served as experimenter.

Design and procedure. Children estimated the
placement of numbers on number lines across three
phases of the experiment: training, generalization,
and posttest (see Figure 4). Number lines were
flanked by two hatch marks, the left hatch mark
was labeled ‘‘0,’’ and right hatch mark was labeled
‘‘100,’’ ‘‘1,000,’’ ‘‘10,000,’’ or ‘‘100,000.’’ On each
trial, children estimated the position of a number
(one per number line) by making a hatch mark
through the line. To-be-estimated numbers (2, 5, 8,
11, 15, 25, 49, 61, 73, 94, and multiples thereof) were
chosen to reduce influence of specific knowledge
(e.g., that 50 is half of 100) and to oversample the

low end of the scale to maximize discriminability of
logarithmic and linear functions.

Figure 4 illustrates training, generalization, and
posttest phases for three experimental conditions:
no alignment, multiple exemplars, and progressive
alignment. During training (Figure 4, left column),
all participants received corrective feedback in the
0–100 scale that indicated how close to or far from
the actual location of the to-be-estimated number
their hatch marks were to ensure children pos-
sessed a linear representation in this scale (see
Opfer & Siegler, 2007, for a more detailed descrip-
tion of the feedback procedure). We reasoned that
if children possessed a linear representation in the
0–100 scale, participants across all experimental
groups should be equally likely to bootstrap their
linear representation to larger numerical scales
(0–1,000, 0–10,000, and 0–100,000).

All training problems specified units (i.e., green
pears, red cherries, and orange carrots) and were
completed in the following order: blank number
line, pear number line, cherry number line, then
carrot number line. After children completed these
training problems, they were told that their esti-
mates did not differ much over different units (e.g.,
‘‘It does not matter if you see pears, cherries, car-
rots, or nothing at all after the number 15, if you
see the number 15, you should make your mark
right here’’).

In the generalization phase (Figure 4, middle col-
umn), we highlighted similarity of generalization
and training problems (that color of units matched
color of zeros in right numerical anchor) and told
participants to ‘‘try some more problems just like
the ones you just finished’’ as the experimenter
drew an arrow from the relevant training problem
to its related generalization problem. During gener-
alization, participants made estimates in the 0–100,
0–1,000, 0–10,000, and 0–100,000 scales without cor-
rective feedback for the numerosity on which they
were just trained.

Figure 4 illustrates training and generalization
for the number 15. Participants completed one
training problem at a time (e.g., 15 on a 0–100 num-
ber line, 15 pears on a 0–100 pear line, 15 cherries
on a 0–100 cherry line, and 15 carrots on a 0–100
carrot line), and then completed generalization
problems in the 0–100 through 0–100,000 scale (e.g.,
15 on a 0–100 number line, 150 on a 0–1,000 number
line, 1,500 on a 0–10,000 number line, and 15,000 on
a 0–100,000 number line). This training and general-
ization procedure was repeated with the other nine
numerosities we investigated for a total of 40 train-
ing trials and 40 generalization trials.
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Following completion of the training and gener-
alization procedure detailed earlier, participants
completed a 10-problem posttest phase (Figure 4,
right column). Participants completed the same 10

problems administered for the 0–1,000 generaliza-
tion phase (e.g., 20, 50, 80, 110, 150, 250, 490, 610,
730, 940). Like the generalization phase, partici-
pants did not receive corrective feedback during

Figure 4. Experiment 2: Illustration of stimuli: (a) no alignment condition, (b) multiple exemplars condition, and (c) progressive
alignment condition.
Note. Units in 0–100 training problems (i.e., pears, cherries, and carrots) were colored to correspond to the final 1–3 zeros in 0–1,000,
0–10,000, and 0–100,000 generalization problems (e.g., 3 carrots and the final three zeros in 100,000 were colored orange). Participants
in the no alignment condition were presented one training or generalization problem per page, so these participants could not compare
across training and generalization problems. Participants in the multiple exemplars condition were presented all training and
generalization problems on one page, so these participants could compare training to other training problems, generalization to other
generalization problems, or training to generalization problems. Participants in the progressive alignment condition were presented
with one training–generalization pair at a time, so these participants could compare across relevant training–generalization pairs only.
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posttest. Unlike generalization, posttest problems
contained no perceptual support (e.g., fruit and
vegetable icons and colored zeros).

To test the effect of alignment on transfer from
training to generalization and posttest problems,
participants were randomly assigned to one of
three between-subjects experimental conditions: no
alignment, multiple exemplars, and progressive
alignment (cf. Figures 4a to 4c). In the no alignment
condition, participants received training and gener-
alization problems one at a time; thus, participants
were not able to compare problems on which they
received feedback during training (e.g., placement
of 15 cherries on a 0–100 cherry line) with problems
they completed during the generalization phase
(e.g., 1,500 on a 0–10,000 number line). In the multi-
ple exemplars and progressive alignment condi-
tions, participants received the same training
problems and corrective feedback as in the no
alignment condition, but generalization problems
were presented alongside previously solved train-
ing problems, thereby allowing children in these
groups to compare generalization problems to
training problems. The multiple exemplars and
progressive alignment conditions differed from one
another in that participants in the progressive
alignment group were only able to compare one
training–generalization pair at a time, thereby
focusing on the critical similarity (e.g., 15 cher-
ries:100 cherries::1,500:10,000). In contrast, partici-
pants in the multiple exemplars condition saw all
training and generalization problems on one page.
Participants in the multiple exemplars condition
were able to compare training problems to general-
ization problems just like participants in the pro-
gressive alignment condition (and thus draw the
relevant analogy), but participants in the multiple
exemplars condition were also given the opportu-
nity to make less useful comparisons, such as com-
paring training problems to training problems
(cherries vs. carrots) and comparing generalization
problems to generalization problems (10,000 vs.
100,000). To put it another way, participants in the
progressive alignment condition were constrained
in the types of comparisons they could make,
whereas participants in the multiple exemplars
condition were unconstrained in the comparisons
they could make.

Results and Discussion

In the following sections, we will analyze chil-
dren’s number line estimates during training, gen-
eralization, and at posttest to determine whether

children were capable of using an analogy to
scale up their linear representation from 0–100
number lines to larger numerical magnitude
contexts.

Training. We first examined accuracy of numeri-
cal estimates during training to confirm that all
three experimental groups performed well on 0–100
number lines, which were problems from which
the groups were expected to generalize in the gen-
eralization and posttest phases. As expected, a
3 (condition: no alignment, multiple exemplars,
progressive alignment) · 4 (unit type: none, pear,
cherry, carrot) ANOVA revealed no effect of condi-
tion or Condition · Unit Type interaction. Presum-
ably due to the fixed order of items, however, there
was a small but reliable effect of unit type,
F(3, 129) = 15.13, p < .001, g2 = .24, with less accu-
rate estimates for the first type of units presented
(none, M = 89%) than for the other three types of
units (pear: M = 94%, d = 0.82; cherry: M = 94%,
d = 1.21; carrot: M = 93%, d = 1.09; ps < .01), which
did not differ significantly.

To confirm that these high levels of accuracy
were associated with use of linear representations,
we again compared the fit of the best fitting linear
and logarithmic regression functions to median
numerical estimates across three experimental con-
ditions. Across all training problems, participants
in the no alignment condition produced more linear
than logarithmic series of estimates (blank: linear
R2 = .99 > logarithmic R2 = .85; pear: linear R2 =
.99 > logarithmic R2 = .86; cherry: linear R2 =
1 > logarithmic R2 = .85; carrot: linear R2 = 1 >
logarithmic R2 = .85), as did participants in the
multiple exemplars condition (blank: linear R2 = .99 >
logarithmic R2 = .86; pear: linear R2 = 1 > logarithmic
R2 = .84; cherry: linear R2 = 1 > logarithmic
R2 = .84; carrot: linear R2 = 1 > logarithmic R2 =
.84), and the progressive alignment condition
(blank: linear R2 = .873 > logarithmic R2 = .869; pear:
linear R2 = 1 > logarithmic R2 = .84; cherry: linear
R2 = 1 > logarithmic R2 = .83; carrot: linear R2 = 1 >
logarithmic R2 = .83). A similar pattern also
emerged from the examination of individual
children’s estimates. Regardless of units, most
children’s estimates were best fit by the linear
function in the no alignment condition (M = 93%
best fit by linear), the multiple exemplars condition
(M = 88% best fit by linear), and the progressive
alignment condition (M = 86% best fit by linear).
Further, tests of Fisher’s exact probabilities revealed
no association between experimental group and
best fitting regression function (logarithmic versus
linear; ps > .05).
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Thus, all three experimental groups were likely
to use an accurate, linear representation of numeri-
cal magnitudes in the 0–100 scale, suggesting they
were equally likely to benefit from applying their
linear representations of the 0–100 scale to 0–1,000,
0–10,000, and 0–100,000 scales. In the next section,
we explored whether all three groups did in fact
apply their linear representations to larger scales
and whether that application was fostered by align-
ment of small and large numerical scales.

Generalization. To test the effect of progressive
alignment on generalization of linear representa-
tions to larger scales, we first examined accuracy
across three experimental groups. To do this, we
conducted a 3 (condition: no alignment, multiple
exemplars, progressive alignment) · 4 (scale: 0–100,
0–1,000, 0–10,000, 0–100,000) repeated measures
ANOVA on accuracy scores on generalization prob-
lems. As expected, there was a main effect of scale,
F(3, 41) = 28.73, p < .001, g2 = .02, and a main effect
of condition, F(2, 43) = 10.44, p < .001, g2 = .91,
although these main effects were qualified by a sig-
nificant Condition · Scale interaction, F(6,
84) = 2.99, p < .01, g2 = .04.

Further, to investigate significant condition dif-
ferences in levels of accuracy across generalization
problems, we conducted post hoc ANOVAs to
determine how differing amounts of alignment
(e.g., no alignment, multiple exemplars, progressive
alignment) affected accuracy of children’s estimates
(see Table 2). As anticipated, there were no differ-
ences in accuracy across experimental conditions
for the 0–100 blank number line problems, presum-
ably because second graders typically represented
magnitudes of these numbers as increasing linearly.
However, children assigned to the multiple exemp-
lars and progressive alignment conditions produce
more accurate series of number line estimates for
0–1,000, 0–10,000, and 0–100,000 generalization
problems as compared to those children assigned
to the no alignment condition.

To assess whether these changes in accuracy were
caused by the logarithmic-to-linear shift, we next
compared the fit of the best-fitting linear and loga-
rithmic functions to median numerical estimates
across three experimental groups (Figure 5). As in
performance on 0–100 problems during training, the
best fitting function for all experimental conditions
on the 0–100 generalization problems was the linear
rather than logarithmic regression function (no align-
ment, linear R2 = 1.0 > logarithmic R2 = .86; multi-
ple exemplars, linear R2 = .99 > logarithmic R2 =
.85; progressive alignment, linear R2 = .99 > logarithmic
R2 = .85).

Experimental groups differed, however, for lar-
ger generalization problems (0–1,000, 0–10,000, and
0–100,000). For the no alignment group, the best fit-
ting function was logarithmic across the 0–1,000
and 0–10,000 generalization problems (logarith-
mic R2 = .9 and .85, respectively); on 0–100,000 gen-
eralization problems, both the linear (R2 = .46) and
logarithmic function (R2 = .39) provided uncom-
monly poor fits to children’s estimates. For the mul-
tiple exemplars group, the best fitting function was
the linear one for both 0–1,000 and 0–10,000 gener-
alization problems (linear R2 = .96 and .84, respec-
tively), but the logarithmic function was the best
fitting function across 0–100,000 generalization
problems (logarithmic R2 = .86). Finally, for the
progressive alignment group, the linear function
provided the best fit across 0–1,000, 0–10,000, and
0–100,000 generalization problems (linear R2 = 1.00,
.98, and .98, respectively).

To ensure that these condition differences in
model fit were due to the effect of alignment and
not due to irregularities arising from averaging,
we used Fisher exact probability tests to examine
reliability of association between condition and
percentage of individual children best fit by the lin-
ear function. On the two smaller scales, 0–100 and
0–1,000, we observed no significant associations
between condition and fit by the linear function (on

Table 2

Accuracy of Numerical Estimates by Scale and Condition

0–1,000 0–10,000 0–100,000

Condition F(2, 45) = 8.38, p < .001 F(2, 45) = 6.06, p < .01 F(2, 45) = 10.89, p < .001

Progressive, M = 90% >

No, M = 78%,

d = 1.25

Progressive, M = 83% >

No, M = 63%,

d = 0.95

Progressive, M = 85%

> No, M = 63%,

d = 1.48

Multiple exemplars,

M = 89% > No, M = 78%,

d = 1.09

Multiple exemplars,

M = 84% > No, M = 63%,

d = 1.16

Multiple exemplars,

M = 82% > No, M = 63%,

d = 1.43
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0–100 scales: no alignment, 93%; multiple exemp-
lars, 100%; progressive alignment, 100%; on 0–1,000
scales: no alignment, 57%; multiple exemplars, 69%;
progressive alignment, 81%). On the two larger
scales, 0–10,000 and 0–100,000, however, we
observed significant associations between condition
and fit by the linear function, with the progressive
alignment group outperforming the other two
experimental groups (on 0–10,000 scales: no align-
ment, 50%; multiple exemplars, 56%; progressive
alignment, 100%; on 0–100,000 scales: no alignment,
50%; multiple exemplars, 50%; progressive alignment,
100%; ps < .05; compare to results of Experiment, 1
illustrated in Figure 3). Thus, while children gener-
alized linear representations of numerical magni-
tude to 0–1,000 scales with and without the help of
alignment of small and large numerical scales, chil-
dren’s generalization of linear representations to
0–10,000 and 0–100,000 scales only occurred when
these scales were individually aligned with 0–100
scales, as they were for children in the progressive
alignment group.

In summary, findings from the generalization
phase of Experiment 2—greater estimation accuracy
on number lines with larger numeric values, better

fits of the linear regression function to estimates on
number lines with larger numeric values, and
strong associations between alignment and likeli-
hood of providing linear estimates on number lines
with larger numeric values—indicate that progres-
sive alignment of large and small number lines led
children to scale up their linear representations of
numerical magnitude more so than no alignment of
large and small scales (no alignment condition) or
alignment of units as well as alignment of large
and small scales (multiple exemplars condition).

We speculate the reason children did not scale
up their linear representation in the multiple ex-
emplars condition, which presumably offered a
wealth of alignment possibilities, may have resulted
from learners failing to align the most effective
pairs (e.g., 0–100 pears training problem compared
to 0–1,000 generalization problem with one green
zero). That is, in the multiple exemplars condition,
children were not constrained in the types of com-
parisons they made across problem types because
they saw all problems on one page. When faced
with the ability to compare any of the number lines
on the page, learners may have failed to notice sur-
face similarities across their initial comparisons.

Figure 5. Experiment 2 (generalization): Median estimates of participants in the no alignment, multiple exemplars, and progressive
alignment groups on 0–1,000, 0–10,000, and 0–100,000 number lines.
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If the children failed to see how the problems
encompassing small and large numeric scales
related to one another, they may have given up on
their attempts to find commonalities. Alternatively,
children may have used a more shallow compari-
son process by simply scanning the multiple
exemplars for obvious, surface commonalities as
compared to engaging in a deeper comparison pro-
cess that might highlight structural similarities
(e.g., decimal system) across the small and large
numerical scales. In the next section, we examined
whether advantages of progressive alignment over
other training procedures persisted to a posttest,
where alignment of large and small scales desisted.

Posttest. To determine whether participants had
transferred their linear representation of number to
larger numbers generally or just to number lines
with perceptual support (e.g., fruit and vegetable
icons and colored zeros), we examined performance
on a blank 0–1,000 number line that was unaccom-
panied by previously solved problems and without
units and zeroes sharing a common color. Our rea-
soning was that if children had grasped the analogy
we intended, they would distance their hatch
marks as a linear function of actual value on num-
ber lines identical to those used in previous studies
(i.e., without perceptual support).

As illustrated in Figure 6, estimates of partici-
pants in the progressive alignment group were
indeed better fit by the linear function (R2 = .95)
than by the logarithmic (R2 = .76). In contrast, chil-
dren’s estimates in the no alignment group were
better fit by the logarithmic function (R2 = .91) than
by the linear (R2 = .66), and children’s estimates in
the multiple exemplars group were also better fit
by the logarithmic function (R2 = .83) than by the
linear (R2 = .58). Finally, the same advantage of
the progressive alignment group was evident in the
percentage of children best fit by the linear as
opposed to the logarithmic function (compare with
0–1,000 condition in Figure 3), with 63% of children

in the progressive alignment group generating
linear series of estimates versus 29% of children in
the no alignment group, v2(1) = 3.45, p = .06, and
25% of children in the multiple exemplars group,
v2(1) = 4.57, p < .05.

General Discussion

The ability to carry out effortless structural align-
ment is a hallmark of human cognitive processing
(Gentner & Markman, 1997; although see Kurtz
et al., 2001, for an instance of more effortful align-
ment) and a potentially general mechanism of cog-
nitive change (Chen & Klahr, 1999; Gentner et al.,
2001; Holyoak & Thagard, 1995; Opfer & Siegler,
2004). In our study, we investigated whether struc-
tural alignment of small numerical scales and large
numerical scales might lead to a representational
change in the domain of number (logarithmic-to-
linear shift) that has been observed across a large
number of age groups (Siegler & Booth, 2004; Opfer
& Thompson, 2008; Siegler & Opfer, 2003).

Our first experiment illustrated large numeric
contexts in which second-, third-, and sixth-grade
children produced linear versus logarithmic series
of numerical magnitude estimates. Our results
supported the idea that abandoning logarithmic
representations of numerical magnitude is not an
all-or-none process. Rather, extending linear repre-
sentations of number to ever-larger numeric scales
occurs gradually over time, with half or more of
each group of children continuing to use logarith-
mic representations on one or more tasks (e.g., 50%
of sixth graders on 0–100,000; 50% of third graders
on 0–10,000 and 0–100,000; and 75% of second
graders on 0–1,000, 0–10,000, and 0–100,000). Thus,
for large numeric scales, children’s use of logarith-
mic representations appeared unchanged by their
experiences—either due to the low frequency with
which they are likely to receive any information

Figure 6. Experiment 2 (posttest): Median estimates of participants in the no alignment, multiple exemplars, and progressive alignment
groups on unsupported 0–1,000 number lines.
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about values in these large scales or due to an
age-related conceptual limitation in representing
large numeric values.

Our second experiment indicated that failure to
abandon logarithmic representations of large num-
bers in favor of linear ones is likely due to poverty
of input regarding large numerical values. Thus,
when second graders—who produced logarithmic
estimates at the highest rates (75%) across all three
tasks in Experiment 1—were simply provided with
the opportunity to align number line problems for
small numerical scales (0–100) with number line
problems of larger numerical scales (0–1,000,
0–10,000, and 0–100,000), children abandoned use
of the logarithmic representation with surprising
frequency. This representational change was most
robust in the progressive alignment condition,
where children could directly compare only rele-
vant training and generalization problems and
where 0% of children provided estimates better fit
by the logarithmic than linear functions on 0–10,000
and 0–100,000 problems. Moreover, these children
continued to generate linear estimates on posttest,
which children in the multiple exemplars and no
alignment conditions did with much less consis-
tency. Progressive alignment of small and large
numerical scales focused children’s attention on the
most informative surface level comparisons allow-
ing children to search for deeper, structural com-
monalities as well. Children in the multiple
exemplars condition were not at all constrained
when attempting to compare small and large
numerical scales. It is likely that surface dissimilari-
ties (e.g., pears, cherries, carrots, 0–100, 0–1,000,
0–10,000, 0–100,000) confused learners in the multi-
ple exemplars condition and prohibited these learn-
ers from discovering deeper, structural similarities
across number lines of small and large numerical
scales.

Analogy as a Mechanism of Representational Change

Why did alignment of small and large numeric
scales produce rapid changes in numerical estima-
tion and generalization of the linear representation?
In our experiment, we aligned contexts in which
children were familiar (e.g., 0–100) with larger,
less familiar numeric contexts (e.g., 0–1,000 to
0–100,000). This alignment methodology apparently
prompted second graders to scale up their linear
representation of numbers by highlighting the
underlying structure of the decimal system and
thereby bootstrap the linear representation they
already possessed in a familiar numeric context

(0–100) to less familiar numeric contexts (0–1,000
through 0–100,000). Although this mechanism of
representational change had been suggested in an
earlier microgenetic study of numerical estimation
(Opfer & Siegler, 2007), the present work provided
unusually strong support for the idea by showing
both that the representational change can occur
without any feedback as well as by showing that
the learning can be generalized very far outside the
training space.

These findings on the effect of alignment in pro-
ducing analogies are also apparent in a number of
other empirical studies (Dixon & Dohn, 2003;
Gentner, Loewenstein, & Thompson, 2003; Kotov-
sky & Gentner, 1996; Uttal, Schreiber, & DeLoache,
1995), where alignment has led people to compare
examples and thereby extract an abstract relational
schema that might be applied to other relevant
problems. For example, novice negotiators who
were learning about negotiation strategies were
asked to compare written case studies in the hopes
that a common negotiation strategy would be
extracted despite differing surface features of pre-
sented problems. Novice negotiators who com-
pared two written case studies detailing
negotiation strategies were better able to abstract
general problem-solving schemas which they later
applied to future negotiation situations, like face-
to-face negotiations, than were negotiators who
were not explicitly told to compare cases or who
received no case-based training whatsoever (Gent-
ner et al., 2003; Loewenstein, Thompson, & Gent-
ner, 2003). The general problem-solving schema
was abstracted, or disembedded, from the original
learning context so that it could be applied to
other relevant case studies outside the original
learning context.

Likewise, other investigators have similarly
noted that alignment specifically and similarity
comparison in general allows participants to
disembed underlying structural relations in prob-
lem-solving tasks. In classic scale model problem-
solving tasks conducted by DeLoache and her
colleagues (e.g., DeLoache, Kolstad, & Anderson,
1991; Uttal et al., 1995), young children were shown
where a hidden object could be found in a scale
model and then were asked to locate the hidden
object in the larger artificial room the model repre-
sented. Not only must children realize the scale
model is related to the larger room and therefore
locations in the model can be mapped directly onto
this larger artificial room in a one-to-one fashion,
but children must also hold in mind the representa-
tion of the scale model to find the hiding place of
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the object in the larger room (Uttal et al., 1995).
According to DeLoache et al. (1991), one way that
children successfully uncover the one-to-one map-
ping between the model and artificial room is by
attending to overlapping similarity in the two
spaces (e.g., object matches and size or scale of
rooms). Further, Loewenstein and Gentner (2001)
found that 3-year-olds’ search behavior in the
DeLoache hiding task was improved by their ability
to compare two sequential hiding tasks transpiring
across two highly similar hiding rooms whereas
search behavior was not improved for those
3-year-olds who saw the highly similar hiding
rooms but were not prompted to compare them.

Another example of participants’ ability to
abstract a general problem-solving schema through
alignment is Dixon and Dohn’s (2003) alternating
sequence problems. In these problems, participants
were shown a connected sequence of balance scales
or gears and then were asked to predict the posi-
tion of the last balance scale in sequence (up or
down) or direction of movement of the last gear in
sequence (clockwise or counterclockwise). Partici-
pants who discovered the underlying structural
relation through comparison of multiple examples
of alternating sequence problems often extracted
the solution more quickly or readily and more con-
sistently transferred the solution to new problem
types than did those participants who were explic-
itly instructed on the relation uniting the problems
(e.g., alternating sequences: up, down, up, down
or clockwise, counterclockwise, clockwise, counter-
clockwise).

As in these cases of learning, children in our
own experiments were given opportunities that
seemed crucial for eliciting their analogies. First,
they were given opportunity to compare across
multiple training problems, much like novice nego-
tiators comparing written case studies (Gentner
et al., 2003), toddlers comparing scale models to
larger rooms (DeLoache et al., 1991; Loewenstein &
Gentner, 2001), adults comparing alternating
sequence problems (Dixon & Dohn, 2003), and chil-
dren comparing geometric shapes that differed in
symmetry and monotonicity in match to sample
tasks (Kotovsky & Gentner, 1996). Second, our par-
ticipants were given perceptual matches to facilitate
alignment of small number line problems (e.g., two
red cherries in 0–100 problems) with large number
line problems (e.g., two red zeros in 0–10,000 prob-
lems), just as DeLoache and colleagues’ toddlers
used high physical similarity across the size of the
scale model and artificial room. Third, not only did
presence of overlapping similarity lead participants

to abstract structural relations, but children’s supe-
rior understanding of the 0–100 scale was probably
crucial, given the finding that increasing partici-
pants’ knowledge base increases the likelihood of
learners noticing structural relations (Kotovsky &
Gentner, 1996). Thus, Experiment 2 appeared to
provide many critical opportunities that children
needed to draw analogies from more familiar to
less familiar problems.

Alternative Role for Familiarity in Numerical
Estimation: Segmented Linear Model

According to the segmented linear model, chil-
dren’s familiarity with numbers, as indexed by
counting ability within a particular numeric scale,
is a good predictor of whether children produce
linear estimates (as in familiar numeric scales) or
logarithmic estimates (as in unfamiliar numeric
scales). Although, according to Ebersbach et al.
(2008), the fit of the logarithmic function may be
illusory, and children’s estimates might be better fit
by two linear regression functions that intersect at a
‘‘change point.’’

Results of Experiment 1 provided an unusual
opportunity to evaluate this alternative model, and
our results do not support the segmented linear
model. Specifically, when we fit estimates using the
segmented linear function, we found increasingly
larger change points as numeric context increased
from 0–1,000 (second grade: 158.7, third grade:
366.5, sixth grade: 386.3, adults: 421.35), 0–10,000
(second grade: 2,330, third grade: 2,500, sixth grade:
4,263, adults: 3,668), and 0–100,000 (second grade:
37,000, third grade: 26,592.5, sixth grade: 23,798,
adults: 48,999.5), r = .94, F(1, 11) = 70.89, p < .001,
suggesting that change point is a task-specific scal-
ing parameter for a logarithmic function rather than
an index of children’s numeric familiarity. To test
the idea that change point is just a task-specific
scaling parameter, we next regressed mean age of
each participant group (second grade: 7.9 years,
third grade: 9.23 years, sixth grade: 12.06 years,
adults: 19.96 years) against the segmented linear
model’s change point, and we found no correlation
between age and supposed range of children’s
familiarity, r = .15, F(1, 11) = .23, p > .05, ns. Thus,
although numeric anchor (0–1,000, 0–10,000, or
0–100,000) accounted for 94% of variation in change
points, age, in comparison, accounted for an insig-
nificant (15%) amount of variation in change points.

Although change point of the segmented linear
model has been interpreted by Ebersbach et al.
(2008) as reflecting a division in children’s
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familiarity with numbers, the finding that change
point varied directly with scale of the number line
task (0–1,000 through 0–100,000) suggests that
change point is better understood merely as a task-
specific scaling parameter. This point is clearest for
third graders, where data from both Ebersbach
et al. (2008) and our own data indicate a change
point of approximately 342 and 366 (respectively)
on the 0–1,000 task. Taken alone, it is tempting to
view 342–366 as an outer range where children’s
familiarity with numbers might end. However,
since we found the same age group of children pro-
ducing estimates with a change point of 2,500 and
26,592 on a 0–10,000 and 0–100,000 task (respec-
tively) these findings clearly undercut this logic:
Change point in a segmented linear model cannot
simply index children’s numeric familiarity. The
alternative explanation—that participants’ familiar-
ity with numbers corresponds directly to the task
to which they were randomly assigned—is clearly
implausible. Thus, although participants in our
studies appeared to use their knowledge of a famil-
iar numeric scale (0–100) to draw an analogy to
less-familiar scales (0–1,000 through 0–100,000),
familiarity itself does not appear to provide a viable
alternative explanation for the logarithmic pattern
of estimates observed in Experiment 1.

Educational Implications

Understanding of place value, or interrelations
of the numeric decimal system, is a part of chil-
dren’s blossoming number sense (U.S. Department
of Education, 2008). This number sense, according
to a recent report by the National Mathematics
Advisory Panel ‘‘includes the ability to estimate
results of computations and thereby to estimate
orders of magnitude’’ (p. 18). The panel detailed
the state of mathematics research and education in
the United States and noted the importance of fos-
tering children’s number sense because ‘‘poor
number sense interferes with learning algorithms
and number facts and prevents use of strategies
to verify if solutions to problems are reasonable’’
(p. 27).

Our current research on alignment of small and
large numerical scales offers a possible means of
providing students explicit as well as implicit
instruction on place value and the decimal system.
In Experiment 2, we showed that progressive align-
ment of small and large numerical scales leads
young children to adopt a linear representation of
number and abandon a logarithmic one, which
lends support to important educational implica-

tions of our results. The educational implication of
this alignment methodology is that it might be used
as a simple classroom intervention that may allow
children to being thinking about numbers in a more
adult-like, linear fashion months and maybe even
years before classical classroom instruction or life
experiences would lead them to do so. As part of
the simple intervention, teachers might align small
numeric scales with larger ones and even provide a
verbal or visual hint about how the decimal system
works (e.g., crossing out the extra zero in 0–1,000
order of magnitude to show how it is similar to the
0–100 order of magnitude). To our knowledge,
highlighting properties of the decimal system
through alignment is not a technique commonly
used by elementary school teachers, but based on
previous evidence of causal and correlational links
between numerical estimation and other mathe-
matical skills (Booth & Siegler, 2006, 2008), we
believe this intervention is likely to be an easy and
effective one to implement.
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